Реферат: Лінійна модель виробництва

Переходячи до матричних позначень, стверджуємо, що вектор виробничих витрат дорівнює . Якщо – вектор кінцевих споживань, тоді валова продукція -ї галузі дорівнює


, (5)

або в матричній формі

. (6)

Систему рівнянь (6) називають моделлю міжгалузевого балансу або моделлю Леонтьєва. Дана модель пов'язує обсяги валових випусків з обсягами кінцевої продукції й може бути використана для розрахунку цих величин. Наприклад, якщо відомий набір можливих при даних ресурсах випусків , то система (6) дозволить розрахувати набір відповідних значень . Якщо спочатку відомий бажаний набір кінцевої продукції, то за допомогою моделі (6) можна визначити необхідні для його забезпечення обсяги валового випуску по галузі, тобто

(7)

при заданій матриці .

3. Розв’язок моделі Леонтьєва

За економічними міркуваннями всі коефіцієнти матриці невід’ємні: , . У цьому випадку говорять, що матриця невід’ємна й записують . Невід’ємні компоненти заданого вектора або .

Розв’язок, який має бути знайдений, за змістом також повинний мати тільки невід’ємні компоненти, тобто потрібне виконання нерівностей або . Можливість одержання невід’ємного розв’язку визначається властивостями матриці .

Матриця називається продуктивною, якщо існують два вектори і , такі, що .

Продуктивність матриці означає, що виробнича система здатна забезпечити деякий позитивний кінцевий випуск за всіма продуктами.

Розглянемо умови продуктивності матриці :

1) послідовні головні мінори матриці позитивні, тобто для кожного виконана нерівність

;

2) матриця невід’ємно зворотна, це означає , що існує зворотна матриця й всі її елементи невід’ємні:

3) матричний ряд збігається, причому

.

4) максимальне власне число .

Повернемося до системи рівнянь (7). За заданим вектором потрібно знайти вектор , для якого . Перепишемо систему (7) у вигляді , де – одинична матриця. Якщо матриця продуктивна, то відповідно до умови 2) матриця існує й невід’ємна. Тому розв’язок системи рівнянь (7) існує, єдиний і має вигляд . Через те, що й , .

Особливістю матриці в моделі Леонтьєва є те, що всі елементи її невід’ємні. Такі матриці володіють рядом властивостей. Розглянемо їх в наступному підрозділі.

4. Властивості невід ємних матриць

Нехай – квадратна матриця розміром з невід’ємними елементами , ; підмножина множини натуральних чисел . Говорять, що ізольовано (щодо даної матриці ), якщо в матриці при , .

Мовою моделі Леонтьєва ізольованість множини означає, що галузі з номерами під час свого функціонування не використовують товари, вироблені галузями з номерами з множин . Інакше кажучи, частина економіки, що утвориться галузями з множини , може існувати незалежно від інших галузей. Якщо перенумерувати індекси так, щоб , , що відповідає одночасній перестановці рядків і стовпців матриці , то матриця матиме вигляд

,(8)

де й – квадратні підматриці розмірів і відповідно, .

Матриця називається нерозкладною, якщо в множині немає ізольованих підмножин, крім самої і порожньої множини.

Інакше кажучи, матриця нерозкладна, якщо одночасною перестановкою рядків і стовпців її не можна привести до вигляду (8).

Нерозкладність матриці в моделі Леонтьєва означає, що кожна галузь використовує хоча й побічно, продукцію всіх галузей.

Розглянемо деякі властивості нерозкладних матриць:

1. Нерозкладна матриця не має нульових рядків і стовпців; якщо -й рядок матриці нульовий, то множина ізольована.

К-во Просмотров: 224
Бесплатно скачать Реферат: Лінійна модель виробництва