Реферат: Математические игры и головоломки

Ниже приведён список самых распространённых “минимальных” операций, которыми пользуются при собирании кубика Рубика. Следует заметить, что это лишь универсальные комбинации, а для создания более совершенного алгоритма собирания кубика, нужно разработать более “глобальные” операции, которые человеку запомнить довольно трудно, но в общем уменьшающие количество действий, необходимых для собирания кубика из каждого конкретного положения.

Первый слой

???????? ????????? (????) 1:

Н ’П ’НП

???????? ????????? (????) 2:

НЛН ’Л


Сложная лесенка:

Н’П’Н2 П

Второй слой

??? ??????? 1:

НЛН’Л’Н’Ф’НФ

??? ??????? 2:

Н’П’НПНФН’Ф’

Третий слой


Выполняются только по две комбинации с поворотом верхней грани между ними:

(ПСн)4


Операция “Обмен” 1:

Ф2 В ’СпВ 2 СлВ ’Ф 2

Операция “Обмен” 2:

Л’Т’П’ТЛТ’ПТ


’ПФП ’)2

??? ????????? ???????? ??????????? ???? ??????, ???? ?? ???????????, ?? ?? ??? ???? ?????? ? ????????? ????????? ??????? ????? ????? ????????????

(ПФ ’П ’Ф) 2

“Игры с дыркой”

До изобретения кубика Рубика для многих людей знакомство с головоломками начиналось с “пятнашек” – так часто называют известную игру “15”.

С пятнашек начинается история игр с дыркой – головоломок, в которых фишки перемещаются по игровому полю за счёт того, что одно из мест на поле свободно. У “пятнашек” есть множество родственников, которые как раз и образовывают целый раздел этих головоломок.

Игру “15” придумал в 70-х годах XIX-го века прославленный американский изобретатель головоломок Сэмюэль Лойд. Время появления его игрушки и известного всем кубика Рубика разделяют ровно сто лет. Любопытно, что возраст обоих изобретателей, когда они придумали свои знаменитые головоломки, был одинаков – немногим больше тридцати. До “пятнашек” никакая другая головоломка таким успехом не пользовалась.

Великий Марк Твен, будучи современником Лойда и свидетелем всеобщего ажиотажа вокруг игры “15”, включил в свою сатирическую повесть “Американский претендент” изложение сообщения, якобы переданного агентством “Ассошиэйтед пресс”, в котором говорилось, что “за последние несколько недель вошла в моду новая игрушка-головоломка... и что от Атлантического океана до Тихого все население Соединенных Штатов прекратило работу и занимается только этой игрушкой; что в связи с этим вся деловая жизнь в стране замерла, ибо судьи, адвокаты, взломщики, священники, воры, торговцы, рабочие, убийцы, женщины, дети, грудные младенцы,— словом, все с утра до ночи заняты одним-единственным высокоинтеллектуальным и сложным делом... что веселье и радость покинули народ,— на смену им пришли озабоченность, задумчивость, тревога, лица у всех вытянулись, на них появились отчаяние и морщины — следы прожитых лет и пережитых трудностей, а вместе с ними и более печальные признаки, указывающие на умственную неполноценность и начинающееся помешательство; что в восьми городах день и ночь работают фабрики, и все же до сих пор не удалось удовлетворить спрос на головоломку”.

Вскоре после своего появления на свет коробочка с цифрами 15 на крышке пересекла океан, быстро распространилась во всех европейских странах и поучила новое имя “такен”. Изобретателю посчастливилось найти ту неуловимую меру сложности, когда головоломка решалась без труда почти всеми и в то же время требовала определённой сообразительности, благодаря чему каждый мог получить удовольствие от сознания своего высокого интеллектуального уровня.

рис. 4

Ловушка Лойда

??????? ?????? ??????????? ? ??????? ??????? ?????????????? ? ???????????? ? ??????? ?????????? ? ????? ? 1000$ ?? ??????? ????????? ??????: ? ???????? ??????? ????? ????????????? ?? ??????? ???????, ?? ??????????? ???? ?????????, ??????? ???????????? ??????? ???? ? ?????? (???. 4); ?????????? ?? ????? ?????, ?? ?? ??????? ????? ?? ?????????, ????? ???????? ??????? ?????? 15 ? 14 ???, ????? ??? ????? ?????? ?? ??????? ???????, ? ?????? ?????? ???? ??? ????????.

Помещая это объявление, Лойд знал, что ничем не рискует, так как предлагает неразрешимую задачу. Эта задача ещё сыграла с изобретателем злую шутку, когда он пытался запатентовать свою игру, – ему сказали, что нельзя запатентовать игру, не имеющую решения.

Секрет игры “15”

Не всегда можно головоломку перевести из одного состояния в другое, — запрещены такие переходы, при которых нарушаются те или другие законы сохранения. Есть такой закон и в игре “15”. Чтобы объяснить его, мысленно заполним пустое место фишкой с номером 16. Тогда каждый ход — сдвиг фишки — будет состоять в том, что эта фишка меняется местами с фишкой 16. Операцию, при которой какие-то две фишки (не обязательно соседние!) меняются местами, так и назовем — обменом; математический термин для таких операций — транспозиция. Очевидно, что из любой расстановки 16 фишек можно не более чем за 15 обменов получитьправильную позицию — обозначим ее S0 — и вообще любую другую расстановку. При этих обменах не запрещается вынимать фишки из коробки. Например, можно сначала поставить на свое место фишку 1, обменяв ее с той фишкой, которая это место занимает, затем точно так же поставить на место фишку 2 и т. д. Последними мы обменяем фишки 15 и 16 — при этом сразу обе встанут правильно. Конечно, не исключено, что по ходу дела какие-то фишки автоматически попадут на свои места, и их трогать не придется, при этом число обменов окажется меньше 15. Можно расставлять фишки по этой же системе, но в другом порядке, скажем 16, 15, 14, .... или совсем иначе, и тогда число обменов может оказаться другим. Однако, каким бы способом ни выбрать последовательность обменов, превращающую одну заданную расстановку фишек в другую, четность числа обменов в этой последовательности всегда будет одной и той же.

Это очень важное и неочевидное докажем ниже. Оно позволяет дать следующее определение: расстановка называется четной, если ее можно превратить в правильную позицию с помощью четного числа обменов, и нечетной в противном случае. В математике обычно говорят не “расстановка”, а “перестановка”; к этому мы еще вернемся. Сама правильная расстановка S0 всегда четная , а ловушка Лойда L нечетная . Но почему они не переводятся друг в друга?

Как выше уже сказано, каждый ход в игре “15” можно рассматривать как обмен фишки с одной из соседних. Следовательно, при каждом ходе четность расстановки 16 фишек меняется: если до хода расстановку можно было упорядочить за N обменов, то после него — за N+1 обменов (взяв этот ход назад), а числа N и N+1 — разной четности. В обеих расстановках классической задачи Лойда дырка (или фишка 16) расположена одинаково. Если бы мы сумели одну расстановку перевести в другую, то фишка 16 должна была совершить столько же ходов вверх, сколько вниз, и столько же ходов вправо, сколько влево, иначе она не вернулась бы назад. Поэтому мы сделали бы четное число ходов, а так как при каждом ходе четность расстановки меняется, в начале и в конце она была бы одинаковой. Но позиции S0 и L, как мы видели, имеют разную четность.

К-во Просмотров: 506
Бесплатно скачать Реферат: Математические игры и головоломки