Реферат: Мембранные потенциалы

3.Фаза реполяризации. Связана с тем, что проницаемость мембраны для K+ еще высока, и он выходит из клетки по градиенту концентрации, несмотря на противодействие электрического градиента (клетка внутри снова имеет отрицательный заряд). Выходом K+ обусловлена вся нисходящая часть пика ПД. Нередко в конце ПД наблюдается замедление реполяризации, кто связано с закрытием значительной части ворот K+ - каналов, а также – с возрастанием противоположно направленного электрического градиента.

Если из внеклеточной среды убрать Na+ или заблокировать Na+ - каналы, то ПД не возникает. Так с помощью местных анестетиков расстраивается механизм управления у ворот Na+ - каналов.

Следовые явления в процессе возбуждения клетки

В конце ПД нередко наблюдается замедление реполяризации, что называют отрицательным следовым потенциалом. Затем может быть зарегистрирована гиперполяризация мембраны (характерно для нервных клеток) – положительный следовый потенциал. Вслед за ним может возникнуть частичная деполяризация клеточной мембраны – также отрицательный следовый потенциал.

Следовая гиперполяризация обычно является результатом еще сохраняющейся повышенной проницаемости для К+ . Характерна для нейронов. Активационные ворота K+ - каналов еще не полностью закрыты, K+ продолжает выходить из клетки согласно концентрационному градиенту. Na/K – насос непосредственно за фазы ПД не отвечает, хотя он работает непрерывно в покое и продолжает работать во время развития ПД. Возможно, Na/K – насос способствует развитию следовой гиперполяризации. Длительная гиперполяризация хорошо выражена в тонких немиелинизированных нервных волокнах (болевых афферентах).

Следовая деполяризация также характерна для нейронов. Возможно, она связана с кратковременным повышением проницаемости мембраны для Na+ и входом его в клетку по градиентам.

Исследования ионных токов

Наиболее распространенный метод исследования ионных каналов – это метод фиксации напряжения (voltage - clamp). Мембранный потенциал с помощью подачи электрического напряжения изменяют и фиксируют на определенном уровне. Затем мембрану градуально деполяризуют, что ведет к открытию ионных каналов и возникновению ионных токов, которые могли бы деполяризовать клетку. Однако при этом пропускается электрический ток, равный по величине, но противоположный по знаку, поэтому трансмембранная разность потенциалов не изменяется. Это дает возможность получить величину ионного тока через мембрану.

Количественное соотношение между ионными токами по отдельным каналам в покое и во время ПД можно выяснить с помощью метода локальной фиксации потенциала (patchclamp). К мембране подводят микроэлектрод – присоску (внутри него создается разрежение) и, если на этом участке оказывается канал, исследуют ионный ток через него. В остальном методика подобна предыдущей. Таким методом было установлено, что через Na+ - каналы может проходить и К+ , но его ток в 10 – 12 раз меньше. Na+ также может проходить через К+ - каналы в 100 раз менее интенсивно.

Резерв в клетке ионов, обеспечивающих возникновение возбуждения, огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменяются. Клетка может возбуждаться до 5·105 раз без подзарядки, т. е. без работы Na/K – насоса. Число импульсов, которое генерирует и проводит нервное волокно, зависит от его толщины, определяющей запас ионов.

Если сила раздражителя, действующего на нервную ткань мала, деполяризация не достигает критического уровня, импульс не возникает. В этом случае ответ ткани на раздражение будет носить форму локального потенциала. Величина такого потенциала вариабельна, она может достигать 10 – 40 мВ. Локальными являются также возбуждающий и тормозной постсинаптические потенциалы, рецепторный и генераторный потенциалы.

Сравнительная характеристика локального потенциала и ПД

Свойство Локальный потенциал Потенциал действия
Распространение На 1 – 2 мм с затуханием (декрементом) Без декремента на большие расстояния по всей длине нервного волокна
Зависимость от величины стимула Возрастает с увеличением силы раздражителя, т. е. подчиняется закону «силы» Не зависит (подчиняется закону «все или ничего»)
Явление суммации Суммируется – возрастает при частых повторных подпороговых раздражениях Не суммируется
Амплитуда 10 – 40 мВ 80 – 130 мВ
Возбудимость ткани при возникновении потенцала Увеличивается Уменьшается вплоть до абсолютной рефрактерности

Повышение возбудимости клетки во время локального потенциала объясняется тем, что мембрана оказывается частично деполяризованной. Если КУД остается на постоянном уровне, то для его достижения требуется гораздо меньший раздражитель. Амплитуда ПД не зависит от силы раздражителя, потому что он возникает вследствие регенеративных процессов.

Возбудимость клетки во время ПД быстро и сильно изменяется. Различают несколько фаз изменения возбудимости:

1. Кратковременное повышение возбудимости в начале ПД. В зависимости от силы раздражителя может формироваться либо локальный потенциал, либо ПД. Возбудимость повышается потому, что клетка частично деполяризована и ПП приближается к критическому значению. Когда деполяризация достигает 50% от пороговой величины, начинают открываться быстрые потенциал – чувствительные Na+ - каналы.

2. Абсолютная рефрактерность – это полная невозбудимость клетки. Соответствует пику ПД и продолжается 1 – 2 мс. Невозбудимость на фазе деполяризации и восходящей стадии инверсии обусловлена тем, что запущен каскад регенеративных реакций, на который повлиять извне уже нельзя: m - ворота Na+ - каналов уже открыты, а еще закрытые открываются в ответ на уменьшение мембранного потенциала. В период нисходящей стадии инверсии мембрана невозбудима, т. к. закрываются инактивационные ворота, состояние которых не может изменить даже сильное раздражение. Абсолютная рефрактерность продолжается и в период реполяризации до достижения величины Екр ± 10 мВ.

Абсолютная рефрактерная фаза ограничивает максимальную частоту генерации ПД. Если абсолютная рефрактерность завершается через 2 мс после начала ПД, клетка может возбуждаться с частотой максимум 500 имп/с. Нейроны ретикулярной формации и толстые миелиновые нервные волокна могут генерировать ПД с частотой 1000 имп/с.

3. Относительная рефрактерная фаза – период восстановления возбудимости, когда сильное раздражение может вызвать новое возбуждение. Соответствует конечной стадии реполяризации и следовой гиперполяризации. Пониженная возбудимость связана с повышенным транспортом К+ из клетки. Поэтому для вызова возбуждения необходимо более сильное раздражение. Кроме того во время гиперполяризации потенциал больше и, следовательно, дальше отстоит от КУД. У нервных волокон относительная рефрактерность длится несколько мс.

4. Фаза экзальтации – это период повышенной возбудимости. Он соответствует следовой деполяризации. В нейронах ЦНС возможна частичная деполяризация вслед за гиперполяризацией. Повышенная возбудимость обусловлена пониженным мембранным потенциалом и повышенной проницаемостью мембраны для Na+ .

Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность, или функциональная подвижность. Мерой лабильности является максимальное число ПД, которое может ткань воспроизвести в 1 с. Лабильность нерва равна 500 – 1000, нервно – мышечного синапса около 100 имп/с. При постепенном увеличении частоты ритмического раздражителя лабильность ткани повышается.

Показателями состояния возбудимости ткани являются пороговый потенциал, пороговая сила, пороговое время.

Пороговый потенциал (∆V) – это минимальная величина, на которую надо уменьшить ПП, чтобы вызвать возбуждение:

∆V = Е0 - Екр ,

где Е0 – это потенциал покоя.

Пороговая сила – это наименьшая сила раздражителя, способная вызвать ПД при неограниченном во времени действии раздражителя. При использовании в качестве раздражителя электрический ток, его пороговая сила равна 1 реобазе. Если возбудимость ткани высока, пороговая сила раздражителя мала.

Аккомодация – это понижение возбудимости ткани и амплитуды ПД вплоть до полного их исчезновения при медленно нарастающем стимуле. Ее главной причиной является инактивация Na+ - каналов, возникающая при медленной деполяризации мембраны – в течение 1 с и более. Клетка теряет возбудимость, если закрывается около 50% инактивационных ворот Na+ - каналов.

Пороговое время – это минимальное время, в течение которого должен действовать на ткань раздражитель пороговой силы, чтобы вызвать ее возбуждение. Хронаксия – наименьшее время, в течение которого должен действовать ток в две реобазы, чтобы вызвать возбуждение.

Проведение нервных импульсов по нервным волокнам

Нервные волокна представляют собой отростки нейронов, с помощью которых осуществляется связь между нейронами, а также с эффекторами. В состав нервного волокна входит осевой цилиндр (нервный отросток) и глиальная оболочка. По взаимоотношению с глиальными клетками выделяют миелиновые и безмиелиновые нервные волокна. Оболочку безмиелиновых волокон образуют шванновские клетки (леммоциты). При этом осевые цилиндры прогибают клеточную оболочку леммоцитов и погружаются в них. Место, где имеется сдвоенная мембрана леммоцита, называется мезаксон. У миелиновых волокон мезаксон удлиняется и спирально закручивается вокруг осевого цилиндра, формируя электроизолирующую миелиновую оболочку. Миелиновая оболочка через равные участки (0,5 – 2 мм) прерывается, образуя, свободные от миелина участки, узловые перехваты Ранвье. Их протяженность находится в пределах 0,25 – 1,0 мкм, в волокнах ЦНС – до 14 мкм. В перехватах возможно формирование ПД, т. к. там есть потенциалзависимые Na+ - каналы. В межузловых сегментах таких каналов нет. В безмиелиновых нервных волокнах Na+ - каналы расположены равномерно по всей поверхности.

К-во Просмотров: 291
Бесплатно скачать Реферат: Мембранные потенциалы