Реферат: Мессбауэровская спектроскопия
, (1.3)
где – число γ-квантов, зарегистрированных детектором за определенное время при значении доплеровской скорости (в эксперименте используют дискретный набор скоростей ); – то же при , когда резонансное поглощение отсутствует. Зависимости и задают вид кривой резонансного поглощения сплавов и соединений железа, лежат в пределах ±10 мм/с.
Величину резонансного эффекта можно представить в следующем виде [5]:
, (1.4)
где (– доплеровская скорость, с – скорость света в вакууме); – доля резонансных γ-кванов в излучении источника; x = 2()/– вероятности испускания и поглощения γ-квантов без отдачи; – сечение поглощения при точном резонансе (ядерная постоянная для данного мессбауэровского изотопа); n – число атомов изотопа на 1 см² поглотителя.
Не зависящая от энергии величина в показателе экспоненты (1.4) определяет эффективную толщину поглотителя для резонансных (кривых) квантов. Если самопоглощение в источнике отсутствует, то для 0<С≤6 (такой поглотитель называется тонким) мессбауэровский спектр может быть аппроксимирован кривой Лоренца:
, (1.5)
где , . Выражение (1.5) можно получить из формулы (1.1), если взять в подынтегральном выражении 2 первых члена разложения экспоненты в ряд по степеням С.
Вероятность эффекта Мессбауэра определяется фононным спектром кристаллов. В дебаевском приближении эта вероятность задается выражением [6].
, (1.6)
где – фактор Дебая-Валлера:
, (1.7)
В области низких температур () вероятность достигает значений, близких к единице, а в области высоких () она очень мала. Из выражения (1.7) следует, что при прочих равных условиях вероятность бесфонного поглощения и излучения больше в кристаллах с высокой температурой Дебая. Последняя определяет жесткость межатомной связи.
Классическая теория эффекта Мессбауэра позволяет дать простую и наглядную интерпретацию фактора Дебая-Валлера [1.7]:
, (1.8)
где – средний квадрат амплитуды колебаний ядра в направлении излучения γ-кванта, – длина его волны.
Из выражений (1.7) и (1.8) ясно, что вероятность эффекта определяется спектром упругих колебаний атомов в решетке кристалла. Мессбауэровская линия интенсивна, если амплитуда колебаний атомов невелика по сравнению с длиной волны γ-квантов, т.е. при низких температурах. В этом случае спектр излучения и поглощения состоит из узкой резонансной линии (бесфонные процессы) и широкой компоненты, обусловленной изменением колебательных состояний решетки при излучении и поглощении γ-квантов (ширина последней на шесть порядков больше ширины резонансной линии).
Анизотропия межатомной связи в решетке обусловливает анизотропию амплитуды колебаний атомов и, следовательно, различную вероятность бесфонного поглощения в различных кристаллографических направлениях. Для монокристаллов, таким образом могут быть измерены не только усредненные, но и угловые зависимости и и получены оценки соответствующих силовых констант.
В приближении тонкого поглотителя вероятность бесфонных переходов пропорциональна площади под кривой резонансного поглощения, которая может быть вычислена по формуле
. (1.9)
Ядерный гамма-резонанс может быть использован для изучения колебательных свойств решетки твердого тела или примесных атомов в этой решетке. Наиболее удобным экспериментальным параметром в этом случае является площадь спектра S, так как она является интегральной характеристикой и не зависит от формы спектра испускания резонансных квантов и самопоглощения в источнике. Эта площадь сохраняется при расщеплении спектра на несколько компонент в результате сверхтонких взаимодействий. Вероятность эффекта Мессбауэра может быть определена также из измерений температурного (релятивистского) сдвига мессбауэровского спектр, обусловленного эффектом Доплера второго порядка.
1.3. ЭФФЕКТЫ СМЕЩЕНИЯ И РАСЩЕПЛЕНИЯ ЛИНИЙ.
ПАРАМЕТРЫ МЕССБАУЭРОВСКИХ СПЕКТРОВ.
Как следует из соотношений (1.3) и (1.4) простейший спектр резонансного поглощения тонкого поглотителя представляет собой одиночную линию лоренцевской формы (из константы вычитается лоренцевская функция):
, (1.10)
где – величина эффекта в максимуме поглощения; константа С в знаменателе учитывает тот факт, что линии излучения и поглощения обычно сдвинуты друг относительно друга (даже в отсутствие отдачи или возбуждения фотонов). Причиной сдвига является ряд эффектов, рассматриваемых в этом параграфе. Интенсивность прошедшего через поглотитель излучения минимальна в максимуме поглощения. Кривая (1.10) напоминает сечение перевернутого колокола с минимумом при (рис. 1.3а).
Форма экспериментальной линии может отличаться от лоренцевской, а её ширина не соответствовать идеальному случаю тонкого поглотителя из-за аппаратурных искажений и целого ряда физических эффектов (см. § 1.1). Сдвиг центра тяжести мессбауэровского спектра может быть вызван следующими причинами:
различием в энергиях нулевых колебаний решеток источника и поглотителя;
температурным красным смещением;