Реферат: Методы активации химических процессов
0.3 HNO2
0.1 HNO3
Цепные реакции
СH-COOH + Br2 + H2 O 2440; Ar HC-COOH
çççç
CH-COOH HOOCH
Реакции с участием макромолекул
Полистирол+стирол+С6 H6 Воздух Продукты полимеризации
Детонация взрывчатых веществ
NCl3 Воздух Продукты взрыва
Реакции в неводных системах
СН3 СН + ССl4 ArN2 , CH4 , H2
O2 CO, CO2 , H2 O
КЛАССИФИКАЦИЯ УЛЬТРАЗВУКОВЫХ РЕАКЦИЙ
Необходимость классификации ультразвуковых колебаний очевидна. Известно два типа химического действия акустических колебаний. Отсюда выделяют два типа ультразвуковых реакций. К первому относятся реакции, которые ускоряются в ультразвуковом поле, но могут протекать и в его отсутствие с меньшей скоростью. К этой группе эффектов можно отнести ускорение гидролиза диметилсульфата и персульфата калия, разложение диазосоединений, ускорение эмульсионной полимеризации, окисление альдегидов, изменение активности катализаторов, например, катализаторов Циглера в процессе полимеризации.
Ко второй группе эффектов относятся реакции, которые без воздействия ультразвуковых колебаний не протекают совсем. Реакции этого типа в зависимости от механизма первичных и вторичных элементарных процессов, можно разделить на следующие шесть классов:
1) Окислительно-восстановительные реакции, которые идут в жидкой фазе между растворенными веществами и продуктами ультразвукового расщепления воды, возникающими в кавитационных пузырьках и переходящими в раствор после их схлопывания;
2) Реакции между растворенными газами и веществами с высокой упругостью пара внутри кавитационных пузырьков (эти реакции не могут осуществляться в растворе при воздействии радикальных продуктов расщепления воды);
3) Цепные реакции в растворе, которые индуцируются не радикальными продуктами расщепления, а каким либо другим веществом, присутствующим в системе и расщепляющимся в кавитационной полости;
4) Реакции с участием макромолекул, например, деструкция молекул полимера и инициированная его полимеризации, которые могут идти и при отсутствии кавитации. В этом случае значительную роль могут играть высокие градиенты скоростей и ускорения, возникающие под действием ультразвука, микропотоки;
5) Инициирование взрыва в жидких или твердых взрывчатых веществах. Для этих процессов весьма важно возникновение ударных волн и высокиих температур при схлопывании кавитационных пузырьков, а также возможных кумулятивных струй;
6) Звукохимические реакции в неводных средах. Примерами таких реакций могут служить:
- отщепление тетрахлоридом углерода под действием ультразвука хлора.
- Также ультразвуковые волны в безводной среде инициируют многие реакци с участием кремнийорганических соединений. Алкилсилоксаны взаимодействуют в ультразвуковом поле с хлористым тионилом:
Например, если R – CH3 , за два часа воздействия ультразвука образуется 27.5 % (CH3 )3 SiCl.
Хлорсиланы под действием ультразвука реагируют с литием, при этом получают высокий выход дисиланов по по общей схеме:
Процессы, отражаемые приведенными реакциями, используют в технологии синтеза полупроводниковых материалов.
КАВИТАЦИЯ
Инициирование большинства звукохимических реакций в водном растворе под действием акустических колебаний обусловлено возникновением кавитации. Кавитация это нарушение сплошности жидкости, связанное с образованием, ростом, осцилированием и схлопыванием парогазовых пузырьков в жидкости. Необходимо отметить, что сплошность среды нарушается только при достижении некой пороговой частоты звуковых колебаний.
Очевидно, что лишь часть энергии ультразвуковых волн, распространяющихся в жидкости, расходуется на образование кавитационных пузырьков.
Остальная часть идет на возникновение микропотоков, нагревание жидкости, образование фонтана и распыление жидкости.
Энергия схлопывающихся пузырьков расходуется на излучение ударных волн, на локальный нагрев газа, содержащегося в сжимающихся кавитационных полостях, на возбуждение сонолюминисценции, на образование свободных радикалов, а также на создание шума (см. рис. 1).
Ек Есл
Епс Екк Епр Е Емп Еха
Ен Еув