Реферат: Методы измерения частоты
Коаксиальные частотомеры выполняют в основном двух типов: четвертьволновые и с нагруженной линией.
Четвертьволновый резонансный частотомер представляет собой разомкнутый отрезок коаксиальной линии (рис. 6). Настройка его осуществляется с помощью микрометрического механизма со шкалой, градуированной в единицах длины I. Резонанс, в линии наступает при I, равной нечетному числу четвертей длины волны.
где п = 0, 1, 2 ...
Отсчеты l1 и l2 соответствуют l/4 и 3l/4, поэтому их разность равна половине длины волны. В общем случае
Четвертьволновые частотомеры применяются на частотах 600 МГц—10 ГГц. Погрешность измерения лежит в пределах 10-3 -5*10-4 .
Резонансный частотомер с нагруженной линией отличается от четвертьволнового тем, что разомкнутая коаксиальная линия нагружается емкостью С, образуемой торцами внутреннего и наружного проводников (рис. 7). Резонанс в нагруженной линии наступает при выполнении условия
где D — внутренний диаметр внешнего проводника; d— внешний диаметр внутреннего проводника: ρ — волновое сопротивление линии.
При настройке такого частотомера одновременно изменяются и длина линии l , и емкость С. Перекрытие, по сравнению с четвертьволновым частотомером, возрастает в 2— 3 раза. Двумя частотомерами с нагруженной линией перекрывается диапазон частот от 150 до 1500 МГц. Измеряемую частоту определяют с помощью градуировочных таблиц или графиков. Погрешность измерения 5-10~3 .
Резонансный частотомер с объемным резонатором настраивается передвижением подвижного поршня (плунжера). Возбуждаемые внутри полости резонатора стоячие волны бывают различных типов. Это зависит от способа введения возбуждающего электромагнитного поля. При возбуждении цилиндрического резонатора через отверстие в центре торцевой стенки (рис. 8, а) возникают колебания типа H111 . Из электродинамики известно, что собственная длина волны, в резонаторе связана с его диаметром а и высотой I следующей зависимостью:
( L/ l )2 + l,37(l/d)2 =(2/λ111 )2
Если положить l= d, то λ111 =1,3 d.
При возбуждении полости резонатора через отверстие в ее боковой стенке возникают колебания типа H011 (рис. 8, б). Поле этих волн характерно отсутствием токов проводимости между торцевой и цилиндрической стенками резонатора, что позволяет применить для настройки бесконтактный плунжер. Проникающая при этом в нерабочее пространство за поршнем энергия поглощается предусмотренным
Рис. 8-8. Схемы частотомеров с объемными резонаторами
для этой цели покрытием, нанесенным на левую (рис. 8, б) поверхность плунжера. Зависимость собственной длины волны типа λ011 от размеров резонатора определяется выражением
(l/l) 2 + 5,94 ( l/d)2 =(2/ λ011 )2
Если для этого резонатора также положить l= d, то λ011 » 0,76d.
Шкала настройки частотомеров с объемными резонаторами градуируется с помощью измерительного генератора соответствующего диапазона частот. Следовательно, главным источником погрешности градуировки является погрешность установки частоты по шкале генератора. Чтобы не усугублять погрешность измерения неточностью настройки в резонанс, добротность объемного резонатора доводят до очень высокого значения. Это достигается полировкой и золочением внутренней поверхности резонатора; при этом добротность достигает 10 000—30 000. Все же погрешность составляет 10- 3 —10-4 . К недостаткам частотомеров с объемными резонаторами относится малое перекрытие, что приводит к необходимости иметь большое их число для измерения нужного диапазона частот.
Частотомеры с распределенными параметрами по способу включения в измеряемую цепь разделяют на проходные и поглощающие. Проходной частотомер снабжен двумя элементами связи — входным для связи с электромагнитным полем и выходным для связи с индикатором. Момент настройки в резонанс определяют по максимальному показанию индикатора (рис. 9, а). Поглощающий частотомер имеет один элемент связи — входной, а
Рис. 8-9. Проходной (а) и поглощающий (б) частотомеры
индикатор включают в линию передачи (рис. 8-9, б). Пока частотомер не настроен в резонанс, показания индикатора максимальны;
при настройке часть энергии поглощается в резонаторе и показания индикатора уменьшаются.
МЕТОД СРАВНЕНИЯ
Метод сравнения для измерения частоты получил широкое распространение, благодаря его простоте, пригодности для использования практически в любом диапазоне частот и сравнительно высокой точности результата измерения. Измеряемая частота определяется по равенству или кратности образцовой частоте. Следовательно, для измерения частоты fx . методом сравнения необходимо иметь источник образцовых частот f обр индикатор равенства или кратности fx . и f обр . В качестве источника образцовых частот применяют образцовые меры частоты, так называемые стандарты частоты, с нестабильностью Ю-9 —10~11 за 1 сут.
Для градуировки генераторов измерительных сигналов используют синтезаторы частоты и другие генераторы, погрешность установки частоты которых на порядок, а нестабильность частоты за 30 мин — на 3 порядка меньше, чем у градуируемого генератора.
Индикатором равенства или кратности частот может быть осциллограф или нелинейный преобразователь частоты;
Рис. 10. К определению кратности частот
в соответствии с этим метод сравнения для измерения частоты реализуют двумя способами: осциллографическим и гетеродинным.