Реферат: Моделі і методи прийняття рішень
Якщо n=3, дерево має 23 =8 листів. Тобто число варіантів експоненційно залежить від n (2n =exp(nln2).
Не кожний перебірний алгоритм є експоненційним (алгоритм пошуку максимального елемента в масиві – лінійний).
Із збільшенням розмірності задачі будь-який поліноміальний алгоритм стає ефективнішим за експоненційний.
2.2 Пошук у глибину і у ширину
Є дві основні стратегії пошуку потрібної вершини на дереві:
1) пошук у ширину;
2) пошук у глибину (перебір з поверненнями, бектрекінг).
Процедура пошуку у ширину передбачає аналіз на кожному кроці нащадків усіх вершин (паралельна перевірка всіх можливих альтернатив).
Процедура пошуку в глибину передбачає першочерговий аналіз нащадків тих вершин, що були проаналізовані останніми. Всі альтернативи аналізуються послідовно; аналіз деякої альтернативи завершується лише тоді, коли встановлюється, приводить вона до успіху чи ні. Якщо ж альтернатива зумовлює невдачу, відбувається повернення і розгляд інших альтернатив.
На рис.2 показана послідовність перегляду вершин при пошуку в ширину, на рис.3 – пошуку в глибину.
Рис.2. Процедура пошуку в ширину
Рис.3. Процедура пошуку в глибину
Пошук в глибину (більш поширений) дозволяє зекономити пам’ять, оскільки при його реалізації не потрібно запам’ятовувати все дерево, а лише вершини, що мають відношення до поточної альтернативи.
2.3. Простір задач і простір станів
При плануванні в просторі станів заданим вважається деякий набір станів (ситуацій). Відомі дії, які може здійснювати система та які визначають перехід з одного стану в інший.
Графом станів задачі називається орієнтований граф, вершини якого відповідають можливим станам предметної області, а дуги – методам переходу від стану до стану.
Дуги можуть мати мітки, які інтерпретуються як вартість або довжина відповідного переходу. Тоді вирішення задачі являє собою пошук шляху від початкового стану до цільового; при цьому типовою вимогою є оптимізація даного рішення (пошуку найкоротшого шляху).
Класичний приклад планування в просторі станів – задача комівояжера.
Планування в просторі задач передбачає декомпозицію початкової задачі на підзадачі, поки не буде досягнути зведення до задач, для яких вже готові алгоритми рішення. Таку декомпозицію можна уявити у вигляді І/АБО графа.
Існують також комбінації планування у просторі задач істанів.
2.4Автоматний спосіб задання алгоритму
В комп’ютері вхідна послідовність бітів перетворюється у вихідну за допомогою логічних схем. Логічні схеми поділяються на комбінаційні схеми і схеми з пам’яттю (скінченні автомати).
У комбінаційних схемах значення вихідних змінних залежать лише від стану вхідних і не залежать від поточного стану схеми. Будь-яка комбінаційна схема реалізує булеву (0/1) функцію від своїх вхідних змінних.
Скінчений автомат є перетворювачем, вихід якого залежить від входу, але й від поточного стану автомата. При цьому кількість вхідних і вихідних змінних, їх значень є скінченою. Поточний стан автомата – в пам’яті.
Найуніверсальнішою моделлю комп’ютерних обчислень є машина Тьюринга.
Автомати мають пам’ять у вигляді стрічки і пристрій для читання з неї. Стрічка розбита на квадрати з символами. Автомат розглядає символи по черзі, виконує обчислення і розв’язує задачі.
Формально скінчений автомат описується так:
FA=<Q, A, b, q0 , F>
де Q=(q1 , q2 , …, qn ) - скінченна множина станів керування; A=(a1 , a2 , .., am ) - вхідний алфавіт; b: Q*A→Q - функція переходів; q0 - початковий стан; - множина заключних станів керування.
Приклад. Потрібно побудувати скінчений автомат який допускає тільки послідовності 0/1, при цьому в послідовності розпізнавання кількість одиниць повинна бути парною, а нулів – непарною.
Згідно з умовою задачі А складатиметься з символів 0, 1, #, де # позначатиме довільний символ, відмінний від 0 і 1. Тобто, А=<0, 1, #>.