Реферат: Модели и методы оценки активов
Актуальность темы данной курсовой работы связана с рациональным применением моделей оценки финансовых активов (САРМ и АРТ) на российском финансовом рынке, объективно требующем нахождения оригинальных подходов к оценке и вложению в ценные бумаги (финансовые активы).
Предпосылки и свойства модели
В 60-х гг. XX века были опубликованы три работы, открывшие новую веху в развитии инвестиционной теории, посвященные модели оценки финансовых активов. Работы Шарпа (1964), Линтнера (1965), Моссина (1966) были посвящены одному и тому же насущному вопросу: «Допустим, все инвесторы, обладая одной и той же информацией, одинаково оценивают риск и ожидаемую доходность акций. Пусть они формируют оптимальные портфели согласно теории Марковица исходя из индивидуальной склонности к риску. Как в этом случае сложатся цены на акции?». Таким образом CAPM (Capital Assets Pricing Model) можно рассматривать как макроэкономическое обобщение теории Марковица. Основным результатом CAPM явилось установление соотношения между доходностью и риском актива для равновесного рынка. Одним из наиболее важных моментов является тот факт, что при выборе инвестор должен учитывать не весь риск ценной бумаги, а только систематический или недиверсифицируемый. Эта часть риска актива тесно связана с рынком в целом и количественно представлена коэффициентов бета, введенным У. Шарпом в его однофакторной модели (в отличие от двухпараметричной модели Марковица, где для принятия решения инвестор рассматривает ожидаемую доходность и стандартное отклонение). Диверсифицируемая часть риска элиминируется путем выбора оптимального портфеля. Характер связи между доходностью и риском имеет вид линейной зависимости.
Предположения, на которых базируется модель оценки финансовых активов, включают как некоторые постулаты теории рынка капитала Марковица, так и дополнительные предположения:
1. Основными факторами оценки инвестиционных портфелей является ожидаемая доходность и стандартное отклонение за период владения портфелем.
2. Предпосылка о ненасыщаемости: при выборе между двумя равными портфелями среди прочих равных инвестор всегда предпочтет портфель с большей доходностью.
3. Предпосылка об избегании риска. Среди прочих равных инвестор всегда выберет портфель с наименьшим стандартным отклонением.
4. Все активы совершенно ликвидны и бесконечно делимы, т.е. всегда могут быть проданы по рыночной цене, причем инвестор может покупать лишь часть акций.
5. Инвестор может осуществлять кредитование и заимствование по безрисковой процентной ставке.
6. Трансакционные издержки и налоги бесконечно малы.
7. Инвестиционный период одинаков для всех инвесторов.
8. Безрисковая процентная ставка равна для всех инвесторов.
9. Информация мгновенно доступна всем инвесторам.
10. Ожидания инвесторов однородны, т.е. они одинаково оценивают ожидаемые доходности, стандартные отклонения и ковариации ценных бумаг.
Ситуация, задаваемая данными предпосылками, совершенна. Все инвесторы одинаково оценивают параметры ценных бумаг, вся информация доступна каждому инвестору, не существует никаких препятствий к совершению сделок. Это сделано не для того, чтобы рассмотреть вопрос о том, как инвестор делает выбор между бумагами, а для того, чтобы проанализировать, как будут формироваться цены на рыночные активы в условиях совершенного рынка.
Выделяют два основных свойства или, лучше сказать, две закономерности, которые характеризуют модель оценки капитальных активов. Во-первых, это теорема о разделении. Из перечисленных выше предпосылок вытекает утверждение о том, что, проанализировав характеристики ценных бумаг и определив эффективное множество, инвесторы выбирают один и тот же касательный портфель. Это объясняется предпосылкой 10, утверждающей однородность ожиданий инвесторов.
Вторым свойством CAPM является тот факт, что каждый вид ценных бумаг имеет ненулевую долю в касательном портфеле. Это определяется рыночным механизмом спроса и предложения. Если доля какой-либо бумаги равна нулю, то ее курс на рынке будет падать, соответственно ожидаемая доходность будет расти, пока инвесторы не начнут покупать данную бумагу и доля ее в портфеле не станет отличной от нуля. Если же, наоборот, на какой-либо актив слишком большой спрос, то брокерам придется поднимать цены, следовательно, снизится доходность и уменьшится доля такой бумаги в касательном портфеле, уравняв спрос и предложение. В конечном итоге рынок должен прийти к равновесию [2].
1.2 связь между риском и доходностью в модели CAPM
Зависимость между риском и ожидаемой доходностью эффективных портфелей описывается прямой под названием рыночная линия (Capital Market Line, CML). Рыночная линия пересекает ось ординат в точке Rf и проходит через точку М, характеризующую рыночный портфель (рис. 1).
Рис. 1. Рыночная линия
Эффективные портфели, принадлежащие этой кривой, формируются из рыночного портфеля и безрисковых кредитований и заимствований. По сути, рыночная линия - это эффективное множество портфелей. Портфели, не использующие рыночный портфель в комбинации с безрисковыми активами, лежат ниже рыночной прямой [4].
Наклон рыночной линии определяется отношением разности доходности рынка и безрисковой доходности к разности в стандартных отклонениях, т.е. наклон равен . Поскольку рыночная линия пересекает ось ординат в точке Rf, то можно записать уравнение этой прямой как:
. (1)
Равновесие на рынке ценных бумаг характеризуется двумя основными показателями: положением безрискового актива на оси ординат, которую называют наградой за ожидание, и наклоном рыночной линии, который называется премией за риск.
Рыночная линия характеризует связь между риском и ожидаемой доходностью для эффективных портфелей. Для описания такой взаимосвязи, характеризующей отдельную ценную бумагу, нужно провести некоторые преобразования.
Стандартное отклонение портфеля вычисляется по формуле:
.
Применив ее для рыночного портфеля, получаем:
, (2)