Реферат: Моделирование FLOW-3D
Примеры покрытий.
Оптимизация процессов покрытия может быть сложной из-за малого масштаба движения жидкости и влияния таких эффектов, как адгезия и поверхностное натяжение. Компьютерное моделирование предоставляет удобный способ анализа этих процессов без необходимости прибегать к дорогостоящим лабораторным исследованиям.
· Линия контакта на неровной поверхности |
· Покрытие завесой |
· Покрытие погружением |
· Впитывание капли |
· Подтеки на жидком слое |
· Mногослойное покрытие скольжением |
· Решение проблемы подвижной линии контакта |
· Образование разрывов |
· Покрытие скольжением |
· Щелевое покрытие |
· Старт щелевого покрытия |
· Двухслойное щелевое покрытие |
· Скатывание воды с утки |
Контактная линия на неровной поверхности:
L.M. Hocking в своей работе [”A moving fluid interface on a rough surface”, J. Fluid Mech., 76, 801, (1976)] предположил, что контактная линия может перемещаться по твердой поверхности, потому что микроскопические неровности индуцируют такую структуру потока, которая с макроскопической точки зрения может быть интерпретирована как "скорость скольжения". Компьютерное исследование данной гипотезы легко выполнимо с помощью FLOW-3D. Выбранный тест включает двухмерную твердую поверхность с системой поперечных регулярно размещенных прямоугольных прорезей. Прорези имеют глубину 2mm и ширину 10mm, размещены с шагом 10mm. Данные размеры типичны для царапин на относительно гладкой поверхности. Статический контактный угол назначен равным 60°. Рабочая жидкость - вода. Тест заключается в размещении этой неровной поверхности на дне канала высотой 15mm и движении воды по каналу со средней скоростью 30cm/s.
На приведенной картинке ясно видно, что контактная линия на шероховатой границе цепляется за ребро прорези и остается там до тех пор, пока динамический контактный угол не превысит 60+90=150°, не опускаясь до этого момента внутрь прорези. Но по достижении данного значения сила адгезии к стенке тянущая жидкость вниз по боковой стенке прорези становится больше поверхностного Утверждение Hocking, что микроскопические помехи могут быть интепретированы как разновидность скорости скольжения с макроскопической точки зрения подтвержается расчетным полем скоростей. Это показано на графике, описывающем распределение горизонтальной скорости в слое элементов непосредственно над поверхностью. При измельчении сетки скорости над участками поверхности стремится к нулю, но над прорезями остается отличной от нуля. Осреднение этой скорости по множеству пазов дает ненулевую горизонтальную скорость, которая может быть интерпретирована как действительное скольжение.
![]() |
Изменение тангенциальной скорости вдоль твердой поверхности натяжения, тянущего жидкость вверх, и контактная линия быстро пересекает прорезь.
С утки вода:
Считается, что утка имеет совершенное средство, отталкивающее воду. Классическая работа, выполненная A.B.D. Cassie и S. Baxter (Trans. Faraday Soc. 40, 1546, 1944), объясняет что утка достигает этого особой микроструктурой оперения, а не каким-либо химическим покрытием. Перо утки состоит из бородок по обе стороны от ствола. Вдоль бородок с обеих сторон тянутся тонкие волоски, которые имеют желобки с одной стороны и крючки с другой. Такое расположение позволяет зацепление волосков соседних бородок, чтобы соединить их для образования связной структуры.
Структура бородок и волосков имеет обширную долю открытого пространства. Диаметр волосков составляет около 8μм, но расстояние меду соседними параллельными волосками равно примерно 5 диаметрам, по осям. Эксперименты показывают, что угол смачивания материала пера водой составляет около 100°. Комбинация несмачивания и регулярной микроструктуры приводит к скатыванию воды, помещенной на перо, без проникновения в него. Моделирование в FLOW-3D объясняет, как это происходит.
На рисунке представлено поперечное сечение набора параллельных волосков диаметром 8μм. Расстояние между ними равно 40 μм. Вода течет со средней скоростью 30см/s. Верхняя граница есть плоскость симметрии. По мере продвижения фронта жидкости слева направо на опверхности волосков образуются контактные линии. Эти контактные линии остаются выше экваторов волосков. Вода не проникает в пространство между волосками, но скользит по верхним поверхностям. Поскольку смоченная поверхность твердых волосков мала по сравнению со свободной поверхностью воды, то вода легко движется поверх волосков, что объясняет выражение “как с гуся вода”
Потребительские товары.
Течение со свободной поверхностью часто встречается в конструкциях потребительских товаров и при их изготовлении. Например, ежедневно заполняется масса бутылок. Правильное с точки зрения отходов проектирование такого процесса принесет огромную экономию.
Возможности FLOW-3D по моделированию течений со свободной поверхностью позволяет легко и быстро оптимизировать процессы заполнения. Программа может быть также использована при проектировании форсунок и многих других предметов домашнего быта.
· Капиллярное всасывание |
· Капля на наклонной поверхности |
· Поглощение капли |
· Упругие напряжения |
· Масляный фильтр |
· Разделение нефте-водяной дисперсии |
· Вихревая форсунка |
· Смыв унитаза |
· Ненасыщенная пористая среда |
Моделирование слива унитаза:
Когда-нибудь задумывались, как работают унитазы? Они действительно бывают достаточно сложные. При нажатии ручки вода начинает заполнять чашу. Когда уровень жидкости в чаше превысит высоту сифона (за чашей), начинается течение типа водослива. Когда поток станет достаточно сильным, в верхней части сифона образуется пузырь, создающий перелив. В это момент сифонирование выталкивает воду из чаши и происходит смывание.
2-D вид по сечению модели. Цвет представляет давление.
3-D вид по сечению модели. Цвет представляет давление.
Струйные принтеры.
Несмотря на продолжающееся движение к "безбумажному" миру, рынок по-прежнему жаждет простых, дешевых струйных принтеров, с все большими запросами на высокое качество печати. Взрыв продаж цифровых фотоаппаратов сопровождается тем, что все больше и больше портебителей жотят иметь дома возможность высококачественной печати. Этим подгоняется спрос на более качественную печать с более высоким разрешением, который в свою очередь побуждает производителей принтеров к созданию лучших путей удовлетворения пользовательских требований посредством необычных конструктивных решений.
Производители струйных принтеров во всем мире используют FLOW-3D для улучшения характеристик своих принтеров. Они используют FLOW-3D для изучения того, как форма, размер и скорость испускаемой капли зависит от таких параметров, как импульс управляющего давления, форма форсунки, коэффициент поверхностного натяжения и многое другое.
· Пузырьковые струи |
· Непрерывная струя |
· Впитывание капли |
· Струи, управляемые давлением |
· Струи, управляемые поршнем |
· Струи, индуцированные звуком |
Судостроение.
Контроль плескания жидкости в танках судов может оказать критичным для безопасности управляющих ими людей. Уже много лет FLOW-3D используется для проектирования систем перегородок с целью уменьшения плескания жидкого груза. Программа также использовалась при прототипировании мультикорпусных танкеров и для расчетов старта и торможения.
Сотрудник Flow Science произвел моделирование подвесного мотора лодки с использованием модели FLOW-3D
Это судно, движущееся со скоростью 50 миль/час, создает сильную кильватерную волну. Моделирование точно предсказывает характер линии установившейся волны и форму хвостового гребня за судном. Также могут быть рассчитаны и силы, действующие на судно. Цветом на рисунке представлена относительная скорости воды.
MEMS.
Микроэлектромеханические системы (MEMS) - это быстро развивающаяся технология производства миниатюрных устройств, использующя технологические процессы подобные тем, которые используются в производстве интегральных схем. MEMS технологии дают способ интеграции механических, жидкостных, оптических и электронных функциональных возможностей в очень маленьких устройствах размером от 0,1 микрона до 1 мм. MEMS устройства имеют два важных преимущества над обычными аналогами. Во-первых, как и интегральные схемы, они могут выпускаться крупными сериями, что существенно снижает себестоимость продукции. Во-вторых, они могут быть напрямую включены в интегральные схемы, что позволяет создавать более сложные, по сранению с другими технологиями, системы.
Однако, как и в любом другом производстве, процесс проектирования MEMS может быть достаточно дорогим, т.к. ученые и инженеры многократно проектируют, изготавливают, испытывают и заново перепроектируют устройство для оптимизауции его характеристик. Компьютеное моделирование обеспечивает количественный анализ и важное понимание по таким дисциплинам, как электроника, механика, химия, теплоперенос и гидромеханика. Использование FLOW-3D для моделирования позволяет существенно снизить затраты на проектирование и производство.Ниже приведены примеры областей, в которых пользователи FLOW-3D добились большого прогресса:
· Капиллярное всасывание |
· Капиллярное заполнение микроканалов |
· Диэлектрофорез |
· Электроосмос |
· Оптический переключатель |
· Термокапиллярный переключатель |