Реферат: Моделирование работы двух кассиров в банке

4. Рассчитать основные характеристики распределений исходных и выходных показателей.

5. Провести анализ полученных результатов и принять решение.

Результаты имитационного эксперимента могут быть дополнены статистическим анализом, а также использоваться для построения прогнозных моделей и сценариев.

Принципы и методы построения имитационных моделей.

Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными Zx ( t ), Z 2 ( f ),... Z „( t ) в n-мерном пространстве.

Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в и-мерном пространстве (Zb Z2 , ... Z„), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.

В данном случае сдвижение» системы понимается в общем смысле - как любое изменение, происходящее в ней.

Известны два принципа построения модели процесса функционирования систем:

1. Принцип At . Рассмотрим этот принцип сначала для детерминированных систем. Предположим, что начальное состояние системы соответствует значениям Zi ( t 0 ), Z 2 ( to ), ... Z „( t 0 ). Принцип At предполагает преобразование модели системы к такому виду, чтобы значения Zb Z2 , ... Z в момент времени tx = t 0 + At можно было вьлислить через начальные значения, а в момент t 2 = tx + At через значения на предшествующем шаге и так для каждого г'-ого шага ( At = const , i =\+ M ).

Для систем, где случайность является определяющим фактором, принцип А? заключается в следующем:

Определяется условное распределение вероятности на первом шаге (^ = t 0 + At ) для случайного вектора, обозначим его (Zb Z2 , ... Z „). Условие состоит в том, что начальное состояние системы соответствует точке траектории (Z \ , Z2 °,...Z°).

Вычисляются значения координат точки траектории движения системы ( tx = t 0 + At ), как значения координат случайного вектора, заданного распределением, найденным на предыдущем шаге.

Отыскиваются условное распределение вектора { Z \, Z \,... Z 2 n ) на втором шаге

( t 2 = h + At ), при условии получения соответствующих значений Z ) (/ = 1-^-я) на первом

шаге и т.д., пока tt = t 0 + i At не примет значения ( tM = t 0 + MAt ).

Принцип At является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени.

2. Принцип особых состояний (принцип az ). При рассмотрении некоторых видов систем можно выделить два вида состояний:

1)обычное, в котором система находится большую часть времени, при этом Zi ( t ), ( i = l +п) изменяются плавно;

2) особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.

Принцип особых состояний отличается от принципа At тем, что шаг по времени в этом случае не постоянен, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.

Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.

Для таких систем применение принципа At является нерациональным, так как при этом возможны пропуски особых состояний и необходимы методы их обнаружения.

В практике использования имитационного моделирования описанные выше принципы при необходимости комбинируют.

Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Например, когда процесс их функционирования описан дифференциальными или интегро-дифференциальными уравнениями. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это - численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования .

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических, так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.

В математических моделях сложных объектов, представленных в виде систем массового обслуживания (СМО), фигурируют средства обслуживания, называемые обслуживающими аппаратами (ОА) или каналами, и обслуживаемые заявки, называемые транзактами.

Состояние СМО характеризуется состояниями ОА, транзактов и очередей к ОА. Состояние ОА описывается двоичной переменной, которая может принимать значения «занят» или «свободен». Переменная, характеризующая состояние транзакта, может иметь значения «обслуживания» или «ожидания». Состояние очереди характеризуется количеством находящихся в ней транзактов.

К-во Просмотров: 210
Бесплатно скачать Реферат: Моделирование работы двух кассиров в банке