Реферат: Накопители на гибких магнитных дисках: что это такое и способ производства
400 5.25, 3.14 80 10 96
720 5.25, 3.14 80 9 96
800 5.25, 3.14 80 10 96
1200 5.25, 3.14 80 15 132
1440 3.14 80 18 132
1600 3.14 80 20 132, 150
2000 3.14 80 25 160
В зависимости от типа носителя, в соответствии с качеством магнитного покрытия, возможностями операционной системы и устройств дискеты можно форматировать для записи на них информации различного максимального объема, что достигается заданием таких параметров форматирования как число дорожек и секторов. Как правило, производителями дискет указывается параметр называемый числом точек на дюйм носителя – Trackperinch (TPI). Данный параметр показывает, какую максимальную плотность размещения областей независимой намагниченности может иметь носитель. Так как с увеличением числа секторов на одной дорожке возрастает плотность размещения областей независимой намагниченности, не следует думать, что любой носитель можно отформатировать на максимальный физический объем, возможный на устройстве. В соответствии с производственными характеристиками диска, необходимо форматировать носитель только в рамках его физических возможностей, иначе риск потери данных после операции записи неограниченно возрастает.
Дисковод представляет собой устройство чтения/записи с/на носитель – дискету. Каждый тип носителя (дискет), как правило, требует собственного устройства – для чтения 5.25 и 3.14 дюймовых дискет, хотя выпускаются и смешанные дисководы, соединяющие в себе устройства для чтения 3.14 и 5.25 дюймовых дискет. Дисководы, как правило, располагаются внутри системного блока, однако, выпускаются и внешние варианты. Снаружи системного блока находится передняя панель дисковода на которой располагаются управляющие элементы – ручка или кнопка фиксации/извлечения дискеты внутри дисковода, отверстие для помещения/извлечения дискеты, индикатор обращения к устройству, светящийся во время операций обращения к дисководу. Внутри дисковод состоит из двигателя, системы управления вращением носителя, двигателя , системы управления позиционированием головок чтения/записи, схем формирования и преобразования сигналов и др. электронных устройств. Дисководы подключаются к другим схемам компьютера посредством интерфейсного кабеля – шлейфа. На концах и/или по длине шлейфа находятся разъемы, один из которых служит для соединения шлейфа с дисководом или дисководами, другой с интерфейсом дискового устройства, находящемся на плате контроллера (интерфейсной карте, плате адаптера) дисковых устройств или на материнской плате. Дисковод также нуждается в подключении питающего напряжения при помощи кабеля питания.
В настоящий момент, технологии хранения и чтения/записи информации на обычную дискету дают невысокие скорости обмена и позволяют добиться плотности записи для объема информации до 2 мегабайт. Такой объеми быстродействие считаются малыми и поэтому дискеты используют лишь как средство транспортировки и архивного хранения небольших объемов информации. Надежность дискет, также, оставляет желать лучшего. Они подвержены вредным воздействиям температурных, гидрометрических, магнитных, механических и др. факторов. Поэтому, с дискетами следует обращаться аккуратно.
Во избежание потери данных или повреждения носителя недопустимо: хранение дискет в местах подверженных воздействию магнитных полей, влаги, сильных механических воздействий, обильного количества пыли, резких температурных перепадов. Необходимо осторожно вставлять и извлекать дискету из дисковода только после того, как индикатор обращения к диску погаснет. В зависимости от интенсивности использования дискеты, ее необходимо проверять на предмет целостности и правильности логической и физической структуры при помощи специального программного обеспечения с различной частотой, но не реже одного раза в два месяца. Также, необходимо производить чистку головок чтения/записи дисковода при помощи специальной чистящей дискеты и очистителя. Срок службы носителя зависит не только от способа его эксплуатации, но и от его исходного качества. Дискеты высокого качества известных крупных производителей способны форматироваться на максимальные объемы и выдерживают при эксплуатации до 70 млн. проходов головки чтения/записи по дорожке, что, практически, означает срок интенсивной эксплуатации до 20 лет. Дискеты безымянных производителей и просто плохого качества, как правило, подвержены таким вредным процессам как высыпанию частичек магнитного покрытия и размагничиваемости. Не следует экономить на носителях информации, если она вам дорога. На практике, нужно стараться использовать только высококачественные дискеты известных производителей.
Методы кодирования данных
Появление различных методов кодирования данных связано, прежде всего, с техническими особенностями устройств хранения и передачи информации и желанием наиболее полно использовать пространство носителей информации. В настоящее время используется несколько различных методов кодирования данных:
Частотная модуляция (FrequencyModulation – FM) – метод, используемый в накопителях на сменных магнитных дисках старых модификаций (40 дорожек). Иначе, кодирование методом FM можно назвать кодированием с единичной плотностью. Метод предполагает запись на носитель в начале каждого битового элемента данных бита синхронизации. Битовый элемент определяется как минимальный интервал времени между битами данных, получаемый при постоянной скорости вращения диска (300 об/мин). Метод гарантирует, по меньшей мере, одну перемену направления потока за единицу времени вращения (в данном случае каждые 8 мкс). Такой временной интервал соответствует максимальной продольной плотности магнитного потока 2330 перемен на 1 см и скорости передачи данных – 125 Кбит/сек. Простота кодирования и декодирования по методу FM определяется постоянной частотой следования синхроимпульсов. Однако, наличие этих бит синхронизации и является одним из недостатков данного метода, т.к. результирующий кодмалоэффективен с точки зрения компактности данных (половина пространства носителя занимается битами синхронизации).
Модифицированная частотная модуляция (ModifiedFrequencyModulation – MFM) – улучшенный метод FM. Модификация заключается в сокращении вдвое длительности битового элемента – до 4 мкс и использовании бит синхронизации не после каждого бита данных, а лишь в случаях, когда в предшествующем и текущем битовых элементах нет ни одного бита данных. Такой способ кодирования позволяет удвоить емкость носителя и скорость передачи данных, по сравнению с методом FM, т.к. в одном и том же битовом элементе никогда не размещаются бит синхронизации и данных, а на один битовый элемент приходится только одна перемена направления магнитного потока.
Запись с групповым кодированием (RunLimitedLength – RLL) – метод, полностью исключающий запись на диск каких-либо синхронизационных бит. Синхронизация достигается за счет использования бит данных. Однако, такой подход требует совершенно иной схемы кодирования, т.к. простое исключение бит синхронизации приведет к записи последовательностей из одних нулей или единиц в которых не будет ни одной перемены полярности магнитного потока. Метод RLL происходит от методов, используемых для кодирования данных при цифровой записи на магнитную ленту. При этом, каждый байт данных разделяется на два полубайта, которые кодируются специальным 5-ти разрядным кодом, суть которого – добиться хотя бы одной перемены направления магнитного потока для каждой пары его разрядов. Что означает, необходимость наличия в любой комбинации 5-ти разрядных кодов не более двух стоящих рядом нулевых бит. Из 32 комбинаций 5 бит такому условию отвечают 16. Они и используются для кодирования по методу RLL. При считывании происходит обратный процесс. При применении метода кодирования RLL скорость передачи возрастает с 250 до 380 Кбит/с, а число перемен полярности магнитного потока до 3330 перемен/см. При этом длительность битового элемента снижается до 2.6 мкс. Поскольку, максимальный интервал времени до перемены магнитного потока известен (два последовательно расположенных нулевых бита), биты данных могут служить битами синхронизации, что делает метод кодирования RLL самосинхронизирующимся и самотактируемым. Метод дает возможность записать на каждой дорожке до 7.6 Кбайт данных. Интересным является тот факт, что метод MFM является частным случаем метода RLL. Для обозначения типа используемого RLL метода применяется аббревиатура вида: RLL2,7, RLL1,7, RLL2,8, RLL1,8, где первая цифра – минимальная, а вторая – максимальная длина последовательности бит – нулей, содержащихся между соседними единицами. Аббревиатура метода MFM записывается как RLL1,3. Модифицированная запись с групповым кодированием (AdvancedRunLimitedLength – ARLL) – улучшенный метод RLL, в котором, наряду с логическим уплотнением данных, производится повышение частоты обмена между контроллером и накопителем.
Технология производства накопителей на гибких магнитных дисках
Запись и считывание информации осуществляются с помощью магнитных головок плавающего типа. Они крепятся на рычагах, которые перемещаются по радиусу дисков с помощью специального следящего привода.
В качестве материала для изготовления магнитных дисков обычно применяют алюминиевый сплав Д16МП (МП — магнитная память). Этот сплав немагнитный, мягкий, достаточно прочный, хорошо обрабатывается. Для уменьшения количества металлургических дефектов на поверхности диска сплав подвергают специальной очистке. например электрофлюсовому рафинированию с продувкой инертным газом.
Торцевые поверхности магнитных дисков покрывают магнитным слоем. Гальваническое магнитное покрытие имеет толщину до 1 мкм, а ферролаковое — до 5 мкм. Только торцевые поверхности крайних дисков не используются для хранения информации. На рабочей поверхности диска размещаются 80 дорожек, 20 секторов.
Записи и считывания информации осуществляются с помощью магнитных головок плавающего типа. Они крепятся на рычагах, которые перемещаются по радиусу диска с помощью специального следящего привода.
Плотность записи определяется величиной зазора между диском и магнитной головкой, а от стабильности зазора зависит качество записи (считывания). Для повышения плотности записи необходимо уменьшить зазор, однако при этом значительно повышаются требования к рабочей поверхности дисков. При малом зазоре и больших погрешностях в макрогеометрии поверхности имеют место значительные колебания амплитуды сигнала воспроизведения. Для надежной работы накопителя на гибких магнитных дисках необходимо обеспечить шероховатость поверхности не более Ra=0,22 мкм и минимальные макрогеометрические отклонения. Торцевое биение диска при вращении с чистотой 30 об/с не должно превышать 0,3 мм, а удельная неплоскостность 0,7 мкм на длине 10 мм.
Выполнение этих требований представляет значительные трудности.
Основными этапами технологического процесса изготовления магнитного диска являются получение заготовки, подготовка поверхности, терморихтование, токарная обработка, нанесения магнитного покрытия, уравновешивание, контроль.
Заготовку дисков получают из листового материала. Резку листов на карточки размером 100х100 мм осуществляют на ножницах с наклонными ножами и прижимом материала. Из карточек вырубкой на штампе или на токарном станке получают диски.
При вырубке зона металла, прилегающая к поверхности среза, упрочняется. Толщина деформированного слоя составляет примерно 0,3 толщины материала. Припуск на последующую токарную обработку должен превышать толщину деформированного слоя.
Размеры заготовки для магнитного диска имеют следующие значения: наружный диаметр составляет 85,5 мм, а внутренний — 24 мм.
Подготовка поверхности заключается в обезжиривании, промывке в горячей проточной воде (при t=60° С в течение 1 — 2 мин.) и сушке. Она осуществляется на специальных установках.
Диск, находящийся в камере станка получает вращение и подвергается действию обезжиривающего раствора, а также протирается вращающимися щетками. Раствор подается из бачка насосом и распыляется форсунками. Чистая вода для промывки поступает из крана. Обезжиривающий раствор из камеры попадает через клапан обратно в бачок для вторичного использования или сливается. Диски сушат горячим воздухом, циркуляция которого в камере осуществляется вентилятором.
Терморихтование заготовок необходимо для снятия внутренних напряжений и обеспечения требований по неплоскостности и осевому биению. Эту операцию наиболее целесообразно выполнять в электрических печах сопротивления, которые обеспечивают минимальные перепады температур по всему рабочему объему. Оптимальная температура рихтования для сплава Д16МП составляет 125-- 215 С, а выдержка при этой температуре 3 ч. Скорость подъема температуры составляет 40° С в час, а скорость охлаждения не более — 20° С в час.
В приспособлении для закрепления дисков при терморихтовании заготовки дисков помещают между алюминиевыми плитами. В каждом слое находится по 10 заготовок. Положение заготовки на плите определяется тремя штифтами, которые фиксируют заготовку по внутреннему диаметру. Они служат также для фиксации вложения следующей плиты. Основание и грузовая плита выполнены из чугуна. Грузовая плита обеспечивает требуемое давление, которое для верхней заготовки составляет 0,02-- 0,04 Мпа. Стойка имеет ушко, с помощью которого приспособление загружают в электрическую шахтную печь. Температура рабочего пространства и приспособления контролируется термопарами, установленными снаружи и внутри приспособления.