Реферат: Обеззараживание воды

Для обеззараживания воды доза озона изменяется в соответствии с ее температурой и рН, а также содержанием в ней органических веществ.

В ряде случаев озонирование является универсальным методом водообработки, так как кроме обеззараживания воды дезодорируется и разлагаются органические вещества, обусловливающие цветность воды, улучшается процесс коагулирования примесей. Концентрация остаточного озона после выхода воды из контактной камеры должна быть 0,1—0,3 мг/л. Передозировка озона не опасна, так как через короткое время он превращается в кислород.

Отечественная промышленность выпускает низкочастотные (50—200 Гц) озонаторы, работающие на токе промышленной частоты и высокочастотные (400—10 000 Гц) более компактные и менее металлоемкие. Завод «Курганхиммаш» серийно выпускает генераторы ОП-6 производительностью по озону до 8 кг/ч (табл. 3), производительность генератора РГО-1 по озону до 10 кг/ч и высокочастотные «Озон-10» также 10 кг/ч, «Озон-1.5» и «Озон-4» — соответственно 1.5 и 4 кг/ч озона (частота 2500 Гц).

Таблица 3 Техническая характеристика озонаторов марки ПО

Марка озонатора Сила тока, А Мощность разряда, кВт Расход воздуха, м3/ч Выход озона, г/ч Расход охлаждающей воды, м3/ч Размер, мм Масса, кг
диаметр длина высота
ПО-2 1 5 20 250 1 606 1600 85 620
ПО-3 1,4 7 24 470 1 706 1585 121 740
ПО-5 2,5 20 50 1000 2,5 1006 1825 241 933

Примечание. Возможная концентрация озона в озонаторах составляет 20 мг/л; расход электроэнергии на I кг озона—14,7 кВт * ч

Обеззараживание воды бактерицидными лучами

Для обеззараживания подземных вод рекомендуется применять бактерицидное излучение при условии, если коли-индекс исходной воды не более 1000 ед/л, содержание железа до 0,3 мг/л, мутность до 2 мг/л. Обеззараживание воды бактерицидными лучами имеет ряд преимуществ перед хлорированием. Природные вкусовые качества и химические свойства воды не изменяются. Бактерицидное действие лучей протекает во много раз быстрее, чем хлора; после облучения воду сразу можно подавать потребителям. Бактерицидные лучи уничтожают не только вегетативные виды бактерий, но и спорообразующие. Эксплуатация установок для обеззараживания воды бактерицидными лучами, проще, чем хлорного хозяйства.

В.Ф. Соколовым было установлено, что наибольшим бактерицидным действием обладают ультрафиолетовые лучи с длиной волны от 295 до 200 мкм. Эту область ультрафиолетового излучения называют бактерицидной. Максимум бактерицидного действия располагается около длины волны в 260 мкм. Процесс отмирания бактерий описывается уравнением

(1)

где р — число бактерий в единице объема, оставшихся живыми после бактерицидного облучения; р0 — начальное число бактерий в единице объема; Е — интенсивность потока бактерицидных лучей; Т — продолжительность облучения; k =2500 — коэффициент сопротивляемости бактерий.

Эффект обеззараживания воды зависит от произведения интенсивности бактерицидного облучения Е на продолжительность облучения Т, т. е. от количества затраченной бактерицидной энергии Это означает, что один и тот же эффект может быть получен при малой интенсивности облучения, но большой продолжительности его и, наоборот, при большой интенсивности облучения и малой продолжительности.

При определении требуемого количества бактерицидной энергии необходимо учитывать ее поглощение при прохождении потока лучей через слой воды. Интенсивность потока лучистой энергии в толще поглощающего оптически однородного вещества (в мкВт/см2) изменяется по закону Ламберта—Бугера

обеззараживание вода озонирование бактерицидный


(2)

где Е0 — интенсивность потока лучистой энергии, поступающей на поверхность вещества, мкВт/см2; а — коэффициент поглощения см-1; х — толщина слоя поглощающего вещества, см.

Коэффициент поглощения существенно зависит от состава воды и для различных источников водоснабжения меняется в широких пределах. Наибольшее влияние на коэффициент поглощения оказывает цветность воды, ее мутность и содержание железа. Жесткость, хлориды, сульфаты, аммиак, нитриты и нитраты в обычных концентрациях практически не влияют на поглощение бактерицидной радиации.

При обеззараживании бактерицидными лучами неочищенных мутных, цветных вод или вод с повышенным содержанием железа коэффициент поглощения оказывается настолько большим, что бактерицидный метод становится экономически нецелесообразным, а с санитарной точки зрения — ненадежным. Поэтому применение бактерицидных лучей рекомендуется только для обеззараживания воды, прошедшей очистку, или для подземных вод, не требующих очистки, но нуждающихся в обеззараживании в профилактических целях.

Большая разница в значениях коэффициента поглощения различных вод указывает на то, что наиболее правильным было бы его экспериментальное определение в каждом конкретном случае проектирования установок для обеззараживания воды. Если такая возможность по каким-либо причинам исключается, можно воспользоваться эмпирической формулой, полученной В.Ф. Соколовым:

(3)


где Ц — цветность воды, град; П — эмпирическая величина, учитывающая влияние мутности воды, равная 7 для вод цветностью до 20 град и 9 для вод цветностью 20 ... 50 град; CFe— концентрация железа, мг/л.

Микроорганизмы, находящиеся в воде, имеют различную степень сопротивляемости действию бактерицидных лучей и значение коэффициента k зависит от вида бактерий. Коэффициент сопротивляемости различных видов вегетативных и патогенных бактерий коли, равного приблизительно 2500, что и принимают при расчетах необходимого количества бактерицидной энергии для обеззараживания. При этом эффект обеззараживания воды, характеризуемый отношением р/р0, подсчитывают по отмиранию бактерий коли. Он зависит от количества затраченной бактерицидной энергии Е-Т, т. е. один и тот же эффект может быть получен при малой интенсивности облучения, но большой продолжительности его и, наоборот, при большой интенсивности облучения и малой продолжительности. При определении необходимого количества бактерицидной энергии следует учитывать ее поглощение при прохождении потока лучей через слой воды: для бесцветных, не требующих обезжелезивания подземных вод, получаемых с глубоких горизонтов, — 0,1 см-1; для родниковой, грунтовой, подрусловой и инфильтрационной воды — 0,15 см-1; для воды поверхностных источников водоснабжения, прошедшей очистку на очистных сооружениях, — 0,2 ... 0,3 см-1.

В последнем случае рекомендуемое значение коэффициента, поглощения принято с запасом, учитывая возможные случайные отклонения показателей качества воды по мутности и цветности от требований ГОСТ 2874—82 «Вода питьевая». В.Ф. Соколов предложил расчетную формулу, которую применяют при проектировании установок для обеззараживания воды бактерицидными лучами:

(4)


где Fp— расчетный поток бактерицидной энергии, Вт; Q— расход обеззараживаемой воды, м3/ч; а — коэффициент поглощения, см-1; k—коэффициент сопротивляемости бактерий, принимаемый равным 2500 мк*Вт*с/см2; р0— коли-индекс воды до облучения; р — коли-индекс воды после облучения, принимаемый согласно ГОСТ 2874—82 не более 3; η0 — коэффициент использования бактерицидного потока, учитывающий поглощение лучей в слое воды, принимаемый равным 0,9; ηп — коэффициент использования бактерицидного потока, учитывающий поглощение лучей отражателем (в аппаратах с непогруженным источником) или в кварцевых чехлах (в аппаратах с погруженными источниками). Значение коэффициента зависит от типа аппарата; для предварительных расчетов он может быть принят равным 0,9.

Необходимое количество бактерицидных ламп п определяют по формуле ni=Fp/Fn,где Fn— расчетный бактерицидный поток одной лампы (табл. 4).

Расход электроэнергии, Вт*ч/м3, на обеззараживание воды

(5)

где N — потребляемая мощность лампы, Вт (см. табл. 5).

Наиболее распространенными источниками бактерицидного излучения являются ртутно-кварцевые лампы высокого давления ПРК и аргонортутные лампы низкого давления РКС-2,5. ртутно-кварцевые лампы высокого давления (примерно 0,05...0,1 МПа) с температурой оболочки при горении лампы до 250 ... 300 °С являются мощными источниками видимого света й ультрафиолетовых лучей с максимумом излучения линий 365.0... 3666,3 мкм. Указанные в табл. 4 основные расчетные параметры ртутно-кварцевых (ПРК и РКС) и аргонортутных (БУВ) ламп относятся к концу расчетного срока их службы, т. е. после 4500... 5000 ч горения. Бактерицидный поток новых ламп на 30% выше.

Таблица 4

Тип лампы Бактерицидный поток, Вт Потребляемая мощность, Вт
УВ-30 2 30
БУВ-60П 6,5 60
ПРК-7 35 1000
РКС-2,5 6000

К-во Просмотров: 411
Бесплатно скачать Реферат: Обеззараживание воды