Реферат: Охрана литосферы
Мощным средством воздействия на литосферные флюиды служит откачка воды из разных горизонтов подземных вод. Объем изъятия подземных вод составлял 9,6 км3 в 1989 г.. К этому еще надо добавить откачку шахтных вод и вод из карьеров и разрезов, которая оценивается примерно в 2,8 км3. При откачках, которые обычно превышают пополнение воды, происходит понижение уровня подземных вод и образование обширных воронок депрессии. Наибольшие понижение уровня подземных вод наблюдаются в районе крупных городов, использующих для водоснабжения подземные воды. Так, уровень подземных вод в Ленинграде понизился на 50 м, а в Москве - на 60 м. Всего в России выявлено свыше 100 участков истощения грунтовых вод. Для получения воды пробурено 170 тыс. скважин, из которых 30% не действует.
Мощным вторжением во флюидные системы литосферы служит добыча нефти и газа. В Предуралье, в Западной Сибири, в Прикаспии и на Северном Кавказе целые поля скважин непрерывно откачивают нефть и газ. Объем добычи нефти в России в 1989 г. составил 480 млн. т., а газа - 640 трилл. м3. Только в Западной Сибири в 1989 г. было пробурено около 3 млн. м скважин, что соответствует примерно полутора тысячам скважин глубиной 2 км. За время разведки нефтегазовых месторождений Западной Сибири пробурены многие десятки тысяч таких скважин. В результате возникли крупные депрессионные воронки, происходит вскрытие и разгерметизация все более глубоко залегающих водоносных, нефтеносных и газоносных горизонтов. Последствия этого процесса еще не проявились в Западной Сибири в полную силу, так как добыча нефти ведется здесь сравнительно недавно. В Татарии, например, где добыча нефти ведется уже долгое время, в районе Ромашкинского нефтяного месторождения с сентября 1986 г. по январь 1989 г. зарегистрировано 198 землетрясений силой до 10 класса. Подавляющая часть очагов землетрясений залегает на глубине 2-3 км в осадочном чехле древней Восточно-Европейской платформы.
Кроме разведочных и промышленных скважин достаточно глубокие горизонты недр затрагивают шахты по добыче полезных ископаемых: угля, полиметаллических руд, солей. Образующиеся в результате добычи полезных подземные пустоты все время растут по объемам и площадям. Так, на рудниках объединений "Уралкалий" и "Сильвинит" закладка горных выработок ведется спустя 5-10 лет после добычи. Эта закладка не компенсирует образованный объем пустот, т.к. из 17 млн. м3 ежегодно образующихся пустот закладывается только 3,5 млн. м3. Сейчас объем пустот только рудника. Первого рудоуправления объединения "Уралкалий" составляет 70 млн. м3. На предприятиях по добыче угля вообще не принята в качестве необходимого элемента закладка выработанного пространства. Все это приводит к просадкам грунтов, а также к нарушению флюидных систем, так как из действующих шахт и карьеров вода откачивается, а закрытые шахты обычно затопляются. Есть веские основания полагать, что районы добычи нефти, газа и угля служат источниками поступления в атмосферу метана.
В целом в России ежегодно создается до 3 млрд. м3 пустот как в виде разрезов и карьеров, так и в виде подземных пустот. Примерно треть этих поверхностных и подземных пустот засыпается и закладывается, а оставшиеся увеличивают объем пустот, который сейчас превышает 10 млрд. м3.
Техногенные нарушения литосферы.
После 1950-х годов мощным фактором воздействия на земные недра стали подземные ядерные взрывы, которых на территории России только в мирных целях было проведено 84, причем значительная часть их была сосредоточена у российского побережья Каспия. Отдаленные последствия воздействия ядерных взрывов на недра земли трудно предвидеть. К тому же эти последствия будут принимать свои формы, и обладать особенностями, связанными с географическим расположением регионов, геологическим строением и развитием тектонических процессов.
В результате многолетнего освоения нефти и газа вокруг Каспийского моря и в его пределах образовался пояс (или ареал) дестабилизации недр, связанный с воздействиями человека. Его развитие претерпело два этапа. Первый этап длился с 1847 по 1959 г. и начался с бурения первой скважины на Апшеронском полуострове. К концу XIX в. нефтяные разработки начались в приморской части Дагестана, в Западной Туркмении и в Северном Прикаспии. Уже тогда появились первые признаки последствий мощного вмешательства человека: начались просадки грунта, обводнение продуктивных пластов, выбросы песка из скважин. Глубины воздействия в это время не превышали 3 км, вскрывались, как правило, слабонапорные флюидодинамические системы, формировались воронки депрессии, истощались водоносные горизонты верхних гидрогеологических этажей, чему способствовало появление глубинных насосов, турбинного способа бурения и газлифта. Подобные техногенные воздействия способствовали оттоку воды из Каспия в верхние горизонты недр прибрежных регионов. На этом этапе откачка флюидов из верхних горизонтов могла даже ускорять обмеление Каспия.
Окончание первого этапа характеризовалось тем, что наряду с расширением площадей и объемов депрессионных воронок, началась разгерметизация высоконапорных флюидодинамических систем с аномально высоким пластовым давлением, поэтому конец первого этапа характеризовался резкими изменениями флюидодинамики недр. Разгерметизация высоконапорных горизонтов с аномально высоким пластовым давлением вызвала перетекание флюидов снизу вверх, в результате чего началась нивелировка депрессионных воронок и подпор приповерхностных водоносных горизонтов. Признаками такого процесса могут служить возрастание числа и сокращение периодов между извержениями грязевых вулканов Апшерона и Кобыстана, резкое повышение минерализации в наблюдательной скважине в Дагестане в Терекли-Мектао, аномально высокие дебиты источников на Индерском солянокупольном поднятии в Северном Прикаспии, которые не увязывались с режимом приповерхностных вод и атмосферными осадками.
Каспий можно рассматривать как относительно тонкий безнапорный слой воды, взаимодействующий с многокилометровой толщей водонефте- и газонасыщенных пород. Эта толща ведет себя подобно губке с предварительно напряженным и легко деформируемым упругим или вязким скелетом. Слой морской воды венчает разрез отложений новейшей тектонической впадины Каспийского моря - наиболее погруженной части гигантского Арало-Каспийского прогиба, который объединяет юго-восточный угол древней Восточно-Европейской платформы, область сочленения молодых Туранской и Скифской плит и Кавказо-Копетдагский сегмент пояса альпийской складчатости.
Неоген-четвертичные отложения впадины Каспийского моря со значительным угловым и азимутальным несогласием наложены на более древние структурные этажи. Отсюда следует, что обособление прогиба в новейшее время еще не завершено, в результате чего имеет место напряженной состояние недр и высокая тектоническая активность. Это подтверждается серией фактов: изостатической неуравновешенностью региона, сейсмичностью и активностью современных движений земной коры, гидротермальной деятельностью, грязевым вулканизмом, наличием аномально высоких пластовых давлений во флюидодинамических системах.
Напряженное состояние недр и тектоническая активность, сопровождающаяся перестройкой недр, порождают неустойчивость флюидодинамических систем и чувствительность их к разного рода возмущениям.
Возмущения вызывают два эффекта. Во-первых, нарушается равновесие между напряжением в скелете горных пород и давлениями в каналах фильтрации флюидов, что приводит к подвижности недр, и перераспределению потоков флюидов. Во-вторых, нарушается тепло- и массоперенос и возникают фазовые переходы: происходит гидролиз алюмосиликатов с разрушением кристаллических решеток минералов осадочных пород и адсорбционного понижения их прочности, происходит химическое разложение молекул воды, выпадение вторичных солей, а также парафинов в коллекторах с нафтидами, изменяется упругость газовых компонентов за счет запечатывания или разгерметизации значительных объемов.
В конце первого этапа эти процессы уже начались, а с началом второго этапа (1960 г.) человек резко расширил масштабы техногенных воздействий. На обширных пространствах шла дальнейшая разгерметизация зон аномально высокого пластового давления.
Новым фактором мощного воздействия на недра явились ядерные подземные взрывы. В Прикаспийском регионе и его обрамлении, начиная с середины 60-х годов, эти взрывы использовались для создания подземных емкостей в соляных куполах (Астраханский свод - 15 взрывов в 1980-1984 гг., купол Большой Азгар - 10 взрывов в 1966 - 1979 гг., 3 взрыва вблизи Оренбурга в 1970 - 1971 гг., 6 взрывов вблизи Уральска в 1983 - 1984 гг.), для создания провальных воронок (Мангышлак - 3 взрыва в 1969 - 1984 гг.) и для глубинного сейсмического зондирования - 6 взрывов в 1972 - 1987 гг. вдоль профилей Элиста-Бузулук, Камышин-Гурьев, Элиста-Жаркамыс-Эмба-Кушмурун. Таким образом, было произведено 47 подземных ядерных взрывов, из которых больше половины на территории России. Кроме того, производились взрывы и в военных целях.
В результате таких мощных воздействий и уже не точечной, а местами площадной разгерметизации зон аномально высоких пластовых давлений, в 60-х годах начал повышаться уровень подземных вод в верхних горизонтах, что особенно ярко проявилось вблизи Астрахани. Вслед за этим последовал рост сейсмической активности в западной части прогиба, участились выбросы грязевых вулканов, и зародилась волна деформаций, которая возникла на Апшероне - в самом старом районе нефтедобычи, и двигалась из области альпийской складчатости на северо-восток в сторону молодых и древних платформ со скоростью 50-60 км/год. Прохождение этой волны сопровождалось резким падением нефтедобычи по всему региону.
Прохождение волны деформаций, вероятно, усилило подпор уровней подземных вод, разрядка которого наступила в 1978 г., чему предшествовало в 50-х годах снижение темпов падения уровня Каспия. С этого года подземные воды стали разгружаться в Каспий с обширных пространств в объеме от 40 до 60 км3/ год. В 1979 г. разгрузка приобрела взрывной характер - уровень моря поднимался со скоростью 30-32 см/год.
За аномальным подъемом уровня Каспия с 1980 г. последовал новый всплеск сейсмической активности, охвативший не только западную часть региона, отличающуюся относительно невысокой сейсмической активностью.
В настоящее время это, пожалуй, единственное объяснение подъема Каспия в нынешнем столетии, который от прошлых подъемов отличается необычайно быстрыми темпами. Объяснения, связанные с изменениями конфигурации дна в результате тектонических движений, не подтверждаются высокоточными повторными нивелировками. Попытка объяснить изменение водного баланса Каспия увеличением притока воды в него и уменьшением испарения не согласуются с особенностями зональной циркуляции, ростом глобальной температуры и изъятиями воды на орошение и хозяйственные нужды.
Таким образом, масштабы техногенной дестабилизации недр Арало-Каспийского прогиба приобрели уже не локальный, а региональный характер, соизмеримый с природными тектоническими процессами. Эта дестабилизация необратима и не поддается пока регулированию.
Можно ожидать, что другим местом региональной дестабилизации недр может стать север Западной Сибири, где идет массированное давление человека на флюидодинамические системы все более глубоких этажей недр.
Список используемой литературы:
- Голубов Б.Н. Техногенная дестабилизация недр и аномальное изменение уровня Каспийского моря. // Изв. АН сер. геогр., 1992 г.
- Ларионов Г.А., Чалов Р.С. Эрозия почв и русловые процессы: управление и контроль. // Глобальные проблемы современности.//Сб. трудов ВНИНСИ. - №5. - М:1988.
- Федеральный экологический фонд Российской Федерации, Лосев К.С., Горшков В.Г., Кондратьев К.Я., и др. Проблемы экологии России. //Москва, 1993.