Реферат: Оптические преобразователи сигнала

Величины I и G определяют также резкость изображения, которая уменьшается с ростом I и G.

Лупа представляет собой систему из одной или нескольких линз с небольшим фокусным расстоянием (f=10 - 100 мм). Дает мнимое увеличение изображения предмета на расстояние наилучшего зрения D (250 мм для нормального глаза) или в бесконечности, т.е. рассматриваемое глазом без усилия аккомодации. Увеличение N=D/fв обоих случаях практически одинаково.

Микроскоп представляет собой комбинацию двух оптических систем (из одной или нескольких линз) – объектива и окуляра, разделенных значительным по сравнению с f1 и f2,расстоянием.

Малый объект помещается вблизи переднего фокуса объектива, дающего его увеличенное действительное изображение, которое рассматривается с помощью окуляра, играющего роль лупы. Общее увеличение микроскопа равно произведению увеличений объектива и окуляра:

где f1 и f2 – фокусные расстояния объектива и окуляра, - расстояния между фокусами обеих систем, D – расстояние наилучшего зрения.

Для малых величин f1 и f2 величина N может иметь порядок 10.

Пределы величине N кладутся дифракционными явлениями. Освещение предмета в микроскопе широкими пучками света (для увеличения разрешающей способности микроскопа) производится с помощью конденсора, фокус которого располагается в плоскости предмета. Объектив должен удовлетворять условию апланатизма для точек возле его фокуса, а также должен быть ахроматизирован. Для ослабления отражения света, происходящего в покровном стекле микроскопа, применяются иммерсионные объективы.

Зрительные трубы представляют собой комбинацию двух оптических систем (из одной или нескольких линз) – объектива и окуляра. Действительное уменьшенное изображение удаленного предмета, даваемое объективом, рассматривается через окуляр как лупу. Увеличение зрительных труб:

где f1 и f2 –фокусные расстояния соответственно объектива и окуляра. Для бесконечно удаленных объективов передняя фокальная плоскость окуляра совмещается с задней фокальной плоскостью объектива (телескопическая система). Величины N для телескопов лежат в пределах 75-200, для зрительных труб – в пределах 7-20.

Проекционные приборы представляют собой комбинацию короткофокусного конденсора (обычно из двух линз) и объектива, дающею на экране действительное увеличенное изображение предмета. Свет от малого источника проходит через конденсор, предмет (обычно прозрачный диапозитив или фотопленку), сходится в фокусе конденсора, совпадающий с входным зрачком объектива, и направляется на экран. Линейное увеличение проекционного прибора:


где d –расстояние от объектива до экрана, f –заднее фокусное расстояние конденсора.

Оптическая система спектральных приборов состоит из источника света в виде узкой щели, переднего объектива, призмы или дифракционной решетки и заднего объектива. Передний объектив (коллиматор) преобразует расходящейся пучок света от щели в параллельный, задний объектив сходит пучок лучей на экране (или на фотопластинку), располагаемый в его фокальной плоскости. Изображение представляет собой спектр (ряд изображений входной щели прибора в лучах с разными длинами волн).

Призма обычно располагается под углом наименьшего отклонения. Линейное увеличение спектрографа:

где f1 и f2 –фокусные расстояния переднего и заднего объективов. Если линза коллиматора целиком освещена, то светосила спектрального прибора определяется светосилой второй линзы.

2. Зрительная система как приемник оптической информации

Зрение, т.е. получение зрительной информации о внешнем мире – форме вещей, их пространственном изображении, цвете, движении и так далее, осуществляется с помощью зрительной системы. Зрительная система состоит из органа зрения – глаза, нервной системы и зрительного центра коры головного мозга. Хотя физиологическое и морфологическое строение глаза изучено достаточно полно, все же механизм зрительной системы в целом еще далеко не ясен. В последние несколько лет появилось большое число работ и проведено много исследований в области изучения процессов формирования восприятия зрительных образов. Развитие таких областей науки, как бионика, кибернетика и теория информации, на ряду с достижениями физиологии, медицины, психологии и других областей науки открывает новые возможности для изучения работы зрительной системы, для выяснения механизма восприятия и распознавания образов. Изучение этих вопросов открывает, в свою очередь, путь к созданию искусственных систем распознавания образов, выполняющих функции зрения человека. Есть все основания полагать, что для решения частных практических задач пропускная способность таких систем будет значительно выше, чем у зрительной системы человека.

Глаз, являющийся внешним органом зрения, представляет собой оптическую систему, с помощью которой формируется изображение окружающих нас предметов на сетчатке. Последняя образует светочувствительное дно глазного яблока. Оптическая система глаза довольна проста, она легко управляться с помощью хорошо организованного мышечного аппарата. Так, путем изменения кривизны хрусталика глаза автоматически фокусирует изображение тех предметов, которые мы хотим рассмотреть в данный момент. Диапазон фокусировки охватывает предметы, удаленные от наблюдателя на десятки сантиметров до бесконечности. Кроме того, автоматически устанавливается оптическая ось глаза так, чтобы подвергающейся рассматриванию изображение проецировалось на центральную часть сетчатки (фовеа), обладающей наибольшей разрешающей способностью (содержащей в своем составе колбочковые окончания).

Разрешающая способность глаза определяется строением сетчатки, которая представляет собой мозаику из светочувствительных нервных окончаний. В соответствии с теорией действительного зрения существует два вида нервных окончаний – фоторецепторов. Колбочки – рецепторы аппарата дневного зрения, характеризуемого малой световой чувствительностью, но зато большой разрешающей способностью и цветоразличительными свойствами. Палочки – рецепторы аппарата сумеречного зрения, не обладающего способностью различать цвета, имеющего малую разрешительную способность, но зато большую световую чувствительность.

Центральная часть сетчатки содержит только колбочки, а периферия – колбочки и палочки. Причем плотность колбочек убывает с удаления от центра, а плотность палочек почти постоянна. Фоторецепторы через сложную нервную систему связаны со зрительным центром головного мозга.

Световое разрешение сетчатки вызывает появление импульсов с различными частотами повторения, которые по сложным цепям проводящей системы поступают к головному мозгу. Но прежде чем сигнал поступит в вышележащие отделы, но подвергаются сложной обработке – кодированию.

Механизм анализа поступающий извне зрительной информации, ее обработки, кодирования и расшифровки еще далеко не изучен.

Зрительный канал представляет собой сложную систему преобразований и передачу информации, которая может быть рассмотрена с позиций общей теории связи. Изучение системы с этих позиций, во-первых, позволяет установить закономерность и взаимосвязь большого накопленного экспериментального материала о различных сторонах и свойствах зрительного восприятия, что, в свою очередь, будет способствовать дальнейшему изучению функциональной деятельности сложной системы зрения. Во-вторых, изучение зрительной системы как канала связи облегчит построение ее технических аналогов.

Весьма приближенно структурная схема зрительной системы может быть проиллюстрирована рис. 2.

Функции оптической системы и анализатора изображения выполняет глаз.

К-во Просмотров: 323
Бесплатно скачать Реферат: Оптические преобразователи сигнала