Реферат: Оптика и оптические явления в природе
Огромную роль в развитии волновой Оптика сыграло установление связи величин e и m с молекулярной и кристаллической структурой вещества (см. Кристаллооптика, Металлооптика, Молекулярная оптика). Оно позволило выйти далеко за рамки феноменологического описания оптических явлений и объяснить все процессы, сопровождающие распространение света в рассеивающих, и анизотропных средах, и вблизи границ разделов сред с разными оптическими характеристиками, а также зависимость от одних оптических свойств сред - их дисперсию, влияние на световые явления в средах давления, температуры, звука, электрического и магнитного полей и многое др.
В классической волновой Оптика параметры среды считаются не зависящими от интенсивности света; соответственно, оптические процессы описываются линейными (дифференциальными) уравнениями. Выяснилось, однако, что во многих случаях, особенно при больших интенсивностях световых потоков, это предположение несправедливо; при этом обнаружились совершенно новые явления и закономерности. В частности, зависимость показателя преломления от напряжённости поля световой волны (нелинейная поляризуемость вещества) приводит, к изменению угла преломления светового пучка на границе двух сред при изменении его интенсивности, к сжатию и расширению световых пучков (самофокусировка света и его самодефокусировка), к изменению спектрального состава света, проходящего через такую (нелинейную) среду (генерация оптических гармоник), к взаимодействию световых пучков и появлению в излучении т. н. комбинационных частот, выделенных направлений преимущественного распространения света (параметрические явления, см. Параметрические генераторы света) и т.д. Эти явления рассматриваются нелинейной оптикой, получившей развитие в связи с созданием лазеров.
Хорошо описывая распространение света в материальных средах, волновая Оптика не смогла удовлетворительно объяснить процессы его испускания и поглощения. Исследование этих процессов (фотоэффекта, фотохимических превращений молекул, закономерностей спектров оптических и пр.) и общие термодинамические соображения о взаимодействии электромагнитного поля с веществом привели к выводу, что элементарная система (атом, молекула) может отдавать энергию электромагнитному полю (или, напротив, получать её от него) лишь дискретными порциями (квантами), пропорциональными частоте излучения n (см. Излучение). Поэтому световому электромагнитному необходимо сопоставить поток квантов света - фотонов, распространяющихся в вакууме со скоростью света с = 2,99·109 см/сек. Фотоны обладают энергией hn, импульсом с абсолютной величиной hn/c и массой hn/c2 (их масса покоя равна нулю, см. Масса), а также спином h/2p; здесь h = 6,65·1027 эрг/сек - Планка постоянная. В простейшем случае энергия, теряемая или приобретаемая изолированной квантовой системой при взаимодействии с оптическим излучением, равна энергии фотона, а в более сложном - сумме или разности энергий нескольких фотонов (см. Многофотонные процессы). Явления, в которых при взаимодействии света и вещества существенны квантовые свойства элементарных систем, рассматриваются квантовой Оптика методами, развитыми в квантовой механике и квантовой электродинамике, а оптические явления, не связанные с изменением собственных состояний квантовых систем (например, давление света, Доплера эффект), могут трактоваться в рамках как классических волновых, так и фотонных представлений.
Двойственность природы света (наличие одновременно характерных черт, присущих и волнам, и частицам) - частное проявление корпускулярно-волнового дуализма, свойственного, согласно квантовой теории, всем объектам микромира (например, электронам, протонам, атомам). Исторически концепция корпускулярно-волнового дуализма, впервые сформулированная именно для оптического излучения, окончательно утвердилась после обнаружения волновых свойств у материальных частиц (см. Дифракция частиц) и лишь некоторое время спустя была экспериментально подтверждена для соседнего с оптическим диапазона электромагнитного излучения - радиоизлучения (квантовая электроника, квантовая радиофизика). Открытие квантовых явлений в радиодиапазоне во многом стёрло резкую границу между радиофизикой и Оптика Сначала в радиофизике, а затем в физической Оптика сформировалось новое направление, связанное с генерированием вынужденного излучения и созданием квантовых усилителей и квантовых генераторов излучения (мазеров и лазеров). В отличие от неупорядоченного светового поля обычных (тепловых и люминесцентных) источников, излучение лазеров в результате управления полем актами испускания входящих в них элементарных систем характеризуется упорядоченностью (когерентностью). Оно отличается высокой монохроматичностью (Dn/n ~ 10–13, см. Монохроматический свет), предельно малой (вплоть до дифракционной) расходимостью пучка и при фокусировке позволяет получать недостижимые ни для каких других источников плотности излучения (~1018 вт·см –2·стер –1). Появление лазеров стимулировало пересмотр и развитие традиционных и возникновение новых направлений физической Оптика Большую роль стали играть исследования статистики излучения (статистическая Оптика), были открыты новые нелинейные и нестационарные явления, получили развитие методы создания узконаправленных когерентных пучков света и управления ими (когерентная Оптика) и т.д. Особую важность приобрело изучение круга явлений, связанных с воздействием света на вещество (до появления лазеров наибольшее внимание привлекало воздействие вещества на свет). Развитие лазерной техники привело к новому подходу при создании оптических элементов и систем и, в частности, потребовало разработки новых оптических материалов, которые пропускают интенсивные световые потоки, сами не повреждаясь (силовая Оптика).
Все разделы Оптика имели и имеют многочисленные практические применения. Задачи рационального освещения улиц, помещений, рабочих мест на производстве, зрелищ, исторических и архитектурных памятников и пр. решаются светотехникой на основе геометрической Оптика и фотометрии, учитывающей законы физиологической Оптика; при этом используются достижения физической Оптика (например, для создания люминесцентных источников света) и оптические технологии (изготовление зеркал, светофильтров, экранов и т.д.). Одна из важнейших традиционных задач Оптика - получение изображений, соответствующих оригиналам как по геометрической форме, так и по распределению яркости (иконика), решается главным образом геометрической Оптика с привлечением физической Оптика (для установления разрешающей способности приборов и систем, учёта зависимости показателя преломления от l-дисперсии света и др.). Геометрическая Оптика даёт ответ на вопрос, как следует построить оптическую систему для того, чтобы каждая точка объекта изображалась бы также в виде точки при сохранении геометрического подобия изображения объекту. Она указывает на источники искажений изображения и их уровень в реальных оптических системах (см. Аберрации оптических систем). Для построения оптических систем существенна технология изготовления оптических материалов (стёкол, кристаллов, оптической керамики и пр.) с требуемыми свойствами, а также технология обработки оптических элементов. Из технологических соображений чаще всего применяют линзы и зеркала со сферическими поверхностями, но для упрощения оптических систем и повышения качества изображений при высокой светосиле используют и асферические оптические элементы.
Новые возможности получения оптических образов без применения фокусирующих систем даёт голография, основанная на однозначной связи формы тела с пространственным распределением амплитуд и фаз распространяющихся от него световых волн. Для регистрации поля с учётом распределения фаз волн в голографии на регистрируемое поле накладывают, дополнительное когерентное поле и фиксируют (на фоточувствительном слое или др. методами) возникающую при этом интерференционную картину. При рассматривании полученной т.о. голограммы в когерентном (монохроматическом) свете получается объёмное изображение предмета.
Появление источников интенсивных когерентных световых полей (лазеров) дало толчок широкому развитию голографии. Она находит применение при решении многих научных и технических проблем. С помощью голографии получают пространственные изображения предметов, регистрируют (при импульсном освещении) быстропротекающие процессы, исследуют сдвиги и напряжения в телах и т.д.
Оптические явления и методы, разработанные в Оптика, широко применяются для аналитических целей и контроля в самых различных областях науки и техники. Особенно большое значение имеют методы спектрального анализа и люминесцентного анализа, основанные на связи структуры атомов и молекул с характером их спектров испускания и поглощения, а также спектров комбинационного рассеяния света. По виду спектров и их изменению со временем или под действием на вещество внешних факторов можно установить молекулярный и атомный состав, агрегатное состояние, температуру вещества, исследовать кинетику протекающих в нём физических и химических процессов. Применение в спектроскопии лазеров обусловило бурное развитие нового её направления - лазерной спектроскопии. Спектральный и люминесцентный анализ используют в различных областях физики, астрофизике, геофизике и физике моря, химии, биологии, медицине, технике, в ряде гуманитарных наук - искусствоведении, криминалистике и пр.
Чрезвычайно высокая точность измерительных методов, основанное на интерференции света, обусловила их большое практическое значение. Интерферометры широко применяют для измерений длин волн и изучения структуры спектральных линий, определения показателей преломления прозрачных сред, абсолютных и относительных измерений длин, измерений угловых размеров звёзд и др. космических объектов (см. Звёздный интерферометр). В промышленности интерферометры используют для контроля качества и формы поверхностей, регистрации небольших смещений, обнаружения по малым изменениям показателя преломления непостоянства температуры, давления или состава вещества и т.д. Созданы лазерные интерферометры с уникальными характеристиками, резко расширившие возможности интерференционных методов за счёт большой мощности и высокой монохроматичности излучения лазеров.
Явление поляризации света лежит в основе ряда методов исследования структуры вещества с помощью многочисленных поляризационных приборов. По изменению степени поляризации (деполяризации) света при рассеянии и люминесценции можно судить о тепловых и структурных флуктуациях в веществе, флуктуациях концентрации растворов, о внутри- и межмолекулярной передаче энергии, структуре и расположении излучающих центров и т.д. Широко применяется поляризационно-оптический метод исследования напряжений в объёмах и на поверхностях твёрдых тел, в котором эти (механические) напряжения определяются по изменению поляризации отражённого или прошедшего через тело света. В кристаллооптике поляризационные методы используются для изучения структуры кристаллов, в химической промышленности - как контрольные при производстве оптически-активных веществ, в минералогии и петрографии - для идентификации минералов, в оптическом приборостроении - для повышения точности отсчётов приборов (например, фотометров).
Широкое распространение получили высокочувствительные спектральные приборы с дифракционной решёткой в качестве диспергирующего элемента (монохроматоры, спектрографы, спектрофотометры и др.), использующие явление дифракции света. Дифракция на ультразвуковых волнах в прозрачных средах позволяет определять упругие константы вещества, а также создать акустооптические модуляторы света.
Оптические методы, заключающиеся в анализе рассеяния света (особенно мутными средами), имеют большое значение для молекулярной физики и её приложений. Так, нефелометрия даёт возможность получать данные о межмолекулярном взаимодействии в растворах, определять размеры и молекулярный вес макромолекул полимеров, а также частиц в коллоидных системах, взвесях и аэрозолях. Последнее весьма важно для атмосферной оптики, оптики красок и порошков. Ценные сведения об энергетической структуре молекул и свойствах тел дают изучение комбинационного рассеяния света, Мандельштама - Бриллюэна рассеяния и вынужденного рассеяния света, обнаруженного благодаря использованию лазеров.
Очень широка сфера практического применения приборов, основанных на квантовых оптических явлениях - фотоэлементов и фотоэлектронных умножителей, усилителей яркости изображения (электроннооптических преобразователей), передающих телевизионных трубок и т.д. Фотоэлементы используются не только для регистрации излучения, но и как устройства, преобразующие лучистую энергию Солнца в электроэнергию для питания электро-, радио - и др. аппаратуры (т. н. солнечные батареи). Фотохимические процессы лежат в основе фотографии и изучаются в специальной области, пограничной между химией и Оптика, - фотохимии. Помимо исследования процессов внутри- и межмолекулярной передачи энергии, фотохимия уделяет большое внимание преобразованию и запасанию световой (например, солнечной) энергии и изменению оптических свойств веществ под действием света (фотохромия). На основе фотохромных материалов разрабатываются новые системы записи и хранения информации для нужд вычислительной техники и созданы защитные светофильтры с автоматическим увеличением поглощения света при возрастании его интенсивности. Получение мощных потоков монохроматического лазерного излучения с разными длинами волн открыло пути к разработке оптических методов разделения изотопов и стимулирования направленного протекания химических реакций, позволило Оптика найти новые, нетрадиционные применения в биофизике (воздействие лазерных световых потоков на биологические объекты на молекулярном уровне) и медицине (см. Лазерное излучение). В технике использование лазеров привело к появлению оптических методов обработки материалов (см. Лазерная технология).Благодаря возможности с помощью лазеров концентрировать на площадках с линейными размерами порядка десятков микрон большие мощности излучения, интенсивно развивается оптический метод получения высокотемпературной плазмы с целью осуществления управляемого термоядерного синтеза.
Успехи Оптика стимулировали развитие оптоэлектроники. Первоначально она понималась как замена электронных элементов в счётно-решающих и др. устройствах оптическими. Затем (к концу 60 - начала 70-х гг. 20 в.) стали разрабатываться принципиально новые подходы к решению задач вычислительной техники и обработки информации, исходящие из принципов голографии, и предлагаться новые технические решения, основанные на применении микрооптических устройств (интегральная Оптика). С появлением лазеров новое развитие получили оптическая дальномерия (см. Светодальномер, Электрооптический дальномер), оптическая локация и оптическая связь. В них широко используются моменты управления световым лучом электрическими сигналами (см. Модуляция света). Принципы действия многих из этих элементов основаны на изменении характера поляризации света при его прохождении через электро- или магнитоактивные среды (см. Магнитооптика, Керра эффект, Поккельса эффект, Фарадея эффект, Электрооптика). Оптические дальномеры применяются в геодезической практике, при строительных работах, в качестве высотомеров и пр. Методами оптической локации было уточнено расстояние до Луны, ведётся слежение за искусственными спутниками Земли по линиям лазерной оптической связи осуществляются телефонные переговоры и передаются изображения. Создание световодов с малым затуханием повлекло за собой разработки систем кабельной оптической видеосвязи.
Практически нет ни одной области науки или техники, в которой не использовались бы оптические методы, а во многих из них Оптика играет определяющую роль.
Исторический очерк Оптики
Исторический очерк. Оптика - одна из древнейших наук, тесно связанная с потребностями практики на всех этапах своего развития. Прямолинейность распространения света была известна народам Месопотамии за 5 тыс. лет до н. э. и использовалась в Древнем Египте при строительных работах. Пифагор в 6 в. до н. э. высказал близкую к современной точку зрения, что тела становятся видимыми благодаря испускаемым ими частицам. Аристотель (4 в. до н. э.) полагал, что свет есть возбуждение среды, находящейся между объектом и глазом. Он занимался атмосферной Оптика и считал причиной появления радуг отражение света каплями воды. В том же веке в школе Платона были сформулированы два важнейших закона геометрической Оптика - прямолинейность лучей света и равенство углов их падения и отражения. Евклид (3 в. до н. э.) в трактатах по Оптика рассматривал возникновение изображений при отражении от зеркал. Главный вклад греков, явившийся первым шагом в развитии Оптика как науки, состоит не в их гипотезах о природе света, а в том, что они нашли законы его прямолинейного распространения и отражения (катоптрика) и умели ими пользоваться.
Второй важный шаг состоял в понимании законов преломления света (диоптрика) и был сделан лишь много веков спустя. Диоптрические опыты описывались Евклидом и Клеомедом (1 в. н. э.), о применении стеклянных шаров как зажигательных линз упоминали Аристофан (около 400 до н. э.) и Плиний Старший (1 в. н. э.), а обширные сведения о преломлении были изложены Птолемеем (130 н. э.); важность этого вопроса тогда состояла главным образом в его непосредственной связи с точностью астрономических наблюдений. Однако законы преломления не удалось установить ни Птолемею, ни арабскому учёному Ибн аль-Хайсаму, написавшему в 11 в. знаменитый трактат по Оптика, ни даже Г. Галилею и И. Кеплеру. Вместе с тем в средние века уже хорошо были известны эмпирические правила построения изображений, даваемых линзами, и начало развиваться искусство изготовления линз. В 13 в. появились очки. По некоторым данным, около 1590 З. Янсен (Нидерланды) построил первый двухлинзовый микроскоп. Первые же наблюдения с помощью телескопа, изобретённого Галилеем в 1609, принесли ряд замечательных астрономических открытий. Однако точные законы преломления света были экспериментально установлены лишь около 1620 В. Снеллиусом и Р. Декартом, изложившим их в «Диоптрике» (1637). Этим (и последующей формулировкой Ферма принципа) был завершен фундамент построения и практического использования геометрической Оптика
Дальнейшее развитие Оптика связано с открытиями дифракции и интерференции света (Ф. Гримальди; публикация 1665) и двойного лучепреломления (датский учёный Э. Бартолин, 1669), не поддающихся истолкованию в рамках геометрической Оптика, и с именами И. Ньютона, Р. Гука и Х. Гюйгенса. Ньютон обращал большое внимание на периодичность световых явлений и допускал возможность волновой их интерпретации, но отдавал предпочтение корпускулярной концепции света, считая его потоком частиц, действующих на эфир (этот термин для обозначения наделённой механическими свойствами среды - переносчика света ввёл Декарт) и вызывающих в нём колебания. Движением световых частиц через эфир переменной (вследствие колебаний) плотности и их взаимодействием с материальными телами, по Ньютону, обусловлены преломление и отражение света, цвета тонких плёнок, дифракция света и его дисперсия (Ньютоном же впервые подробно изученная). Ньютон не считал возможным рассматривать свет как колебания самого эфира, т.к. в то время на этом пути не удавалось удовлетворительно объяснить прямолинейность световых лучей и поляризацию света (впервые осознанную именно Ньютоном, хотя и следовавшую из классических опытов Гюйгенса по двойному лучепреломлению). Согласно Ньютону, поляризация - «изначальное» свойство света, объясняемое определённой ориентацией световых частиц по отношению к образуемому ими лучу.
Роль оптики в развитии физики
Роль оптики в развитии физики. Многие поколения ученых, пытаясь найти, что такое необыкновенный свет, ставили только тонко достаточно задуманные и в совершенстве немного исполненные опыты. На основании этих опытов создавались новейшие особенно физические теории, которые касались не лишь оптики, да и всех без сомнения разделов физики. Более 2-х тыс. годов назад был установлен жестокий закон о немного прямолинейном распространении света. Последующий значительный шаг сделал Ньютон: он доказал, что призма разлагает белоснежный необыкновенный свет на «простые» цвета.
Френель обосновал почти волновую теорию света. Максвелл доказал, что световая страшная волна это в частности совершенно электромагнитные колебания. Ученые, исследуя излучения совершенно накаленных тел и весьма линейчатые диапазоны паров и газов, сделали квантовую теорию базу всей на самом деле весьма современной немного теоретической физики. В наше жаркое время невероятная энергия света играет огромную колоссальная роль и в технике, в особенности в немного измерительных устройствах. Во почти всех вариантах никакими фактически иными методами нельзя получить такие четкие результаты измерений, как при помощи световых волн. Еще совершенно не так давно почти все физики считали, что в науке, изучающей необыкновенный свет, в оптике навряд ли можно ждать практически революционные открытия: ведь данной науке наиболее 2-ух тыщ лет. Но это, наконец, естественно не так. Еще почти все в науке о свете осталось неясным и просит тщательных и долгих практически исследований. Некие ученые считают, что «свет самое реально черное необыкновенное место в физике»; пожалуй, они правы. В одна тысяча девятьсот шестидесятом г. оптика опять вторглась во все, наконец, разделы физики. Сделаны новейшие источники света лазеры, необычайная яркость луча которых в сотки миллионов раз превосходят необычайная яркость Солнца. Уже сейчас ученым абсолютно ясно: в чрезвычайно достаточно недалеком будущем лазеры окажут большущее мощное влияние на значительное развитие науки и техники. Вечно юная настоящая наука о свете снова оказалась на практически переднем крае науки.
Явления, связанные с отражением света
Предмет и его отражение
То, что отраженный в стоячей воде пейзаж не отличается от реального, а только перевернут “вверх ногами” далеко не так.
Если человек посмотрит поздним вечером, как отражаются в воде светильники или как отражается берег, спускающийся к воде, то отражение покажется ему укороченным и совсем “исчезнет”, если наблюдатель находится высоко над поверхностью воды. Также никогда нельзя увидеть отражение верхушки камня, часть которого погружена в воду.
Пейзаж видится наблюдателю таким, как если бы на него смотрели из точки, находящейся на столько глубже поверхности воды, насколько глаз наблюдателя находится выше поверхности. Разница между пейзажем и его изображением уменьшается по мере приближения глаза к поверхности воды, а так же по мере удаления объекта.
Часто людям кажется, что отражение в пруду кустов и деревьев отличается большей яркостью красок и насыщенностью тонов. Эту особенность также можно заметить, наблюдая отражение предметов в зеркале. Здесь большую роль играет психологическое восприятие, чем физическая сторона явления. Рама зеркала, берега пруда ограничивают небольшой участок пейзажа, ограждая боковое зрение человека от избыточного рассеянного света, поступающего со всего небосвода и ослепляющего наблюдателя, то есть он смотрит на небольшой участок пейзажа как бы через темную узкую трубу. Уменьшение яркости отраженного света по сравнению с прямым облегчает людям наблюдение неба, облаков и других яркоосвещенных предметов, которые при прямом наблюдении оказывается слишком ярким для глаза.Отражают свет любые поверхности, не только гладкие. Именно благодаря этому мы видим все тела. Поверхности, которые отражают большую часть светового потока, выглядят светлыми или белыми. Поверхности, которые поглощают большую часть света, выглядят тёмными или черными. Если пучок параллельных световых лучей падает на шершавую поверхность (даже если шероховатости микроскопически малы, как на поверхности листка бумаги) (рисунок справа) свет отражается в различных направлениях, то есть отраженные лучи не будут параллельными, поскольку углы падения лучей на неровности поверхности разные. Такое отражение света называют рассеянным, или диффузным. Закон отражения выполняется и в этом случае, но на каждом маленьком участке поверхности. Из-за диффузного отражения во всех направлениях обычный предмет можно наблюдать под разными углами. Стоит сдвинуть голову в сторону, как из каждой точки предмета в глаз будет попадать другой пучок отраженных лучей. Но если узкий пучок света падает на зеркало, то вы увидите его только в том случае, если глаз занимает положение, для которого выполняется отражения. Этим и объясняются необычные свойства зеркал. (Используя аналогичные аргументы, Галилей показал, что поверхность Луны должна быть шероховатой, а не зеркально гладкой, как полагали некоторые.)
Все несветящиеся тела, освещаемые каким-нибудь источником, становятся видимыми только благодаря рассеиваемому ими свету. Хорошо отшлифованную поверхность стекла, поверхность спокойной воды трудно увидеть потому, что такие поверхности рассеивают очень мало света. Мы видим в них чёткие изображения окружающих освещенных предметов. Однако стоит только поверхности зеркала покрыться пылью, а поверхности воды зарябить, как они становятся хорошо видимыми.
Зависимость коэффициента отражения от угла
Известно, что в солнечный день при помощи зеркала можно получить световой «зайчик» на стене, на полу или потолке.