Реферат: Основные алгоритмические конструкции и соответствующие им конструкции языка программирования QBasic
Блок вычислений
Начало (заголовок) цикла
Проверка условий
Ввод/Вывод данных
· псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);
Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.
Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой строны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.
В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя.
Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются.
Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.
Примером псевдокода является школьный алгоритмический язык в русской нотации (школьный АЯ), описанный в учебнике А.Г. Кушниренко и др. "Основы информатики и вычислительной техники", 1991. Этот язык в дальнейшем мы будем называть просто "алгоритмический язык".
Пример записи алгоритма на школьном АЯ:
алг Сумма квадратов (арг цел n, рез цел S)
дано | n > 0
надо | S = 1*1 + 2*2 + 3*3 + ... + n*n
нач цел i
ввод n; S:=0
нц для i от 1 до n
S:=S+i*i
кц
вывод "S = ", S
кон
· Формальные языки ( QBasic, Pascal и тд.).
Пример:
'Вывод выражений с помощью оператора PRINT
PRINT "Вывод чисел:"
PRINT 23.4
PRINT-10.2
PRINT
PRINT
PRINT "Вычислим (10+4) - 4*(2-3'^2)"
PRINT (10 + 4)-4* (2-3^2)
PRINT
PRINT "В заключение объединим отдельные"
PRINT
PRINT "слова в текст:"
PRINT "Сегодня" + " " + "хорошая" + " погода"
'Конец программы
Основные алгоритмические конструкции:
Линейный алгоритм.
В алгоритмическом языке линейным является алгоритм, состоящий из команд, выполняющихся одна за другой. Они в записи алгоритма располагаются в том порядке, в каком должны быть выполнены предписываемые ими действия. Такой порядок выполнения называется естественным. Последовательность команд образует составную команду «цепочка», которая в записи блок-схемой имеет вид, приведенный на рисунке 1.
![]() | |
![]() |
Рис.1 Блок-схема линейного алгоритма.
В математике к линейным алгоритмам относятся алгоритмы, представленные формулами. Они наиболее просты для программирования. Заметим, что естественный способ кодировки формул делает программу легкочитаемой, но нередко приводит к лишним вычислениям, поэтому, чтобы избежать повторных вычислений и сократить общее количество операций выполняйте тождественные преобразования выражений. С другой стороны, надо знать, что не всегда следует осуществлять оптимизацию, поскольку она является не правилом, а исключением. Этому есть три причины, главная из которых состоит в том, что оптимизация ухудшает наглядность программ, вторая - выгоды от оптимизации должны быть существенными и третья - современные системы, как правило, имеют удовлетворительные оптимизирующие компиляторы.