Реферат: Основные функции и компоненты ядра ОС UNIX
Сегмент стека - это область виртуальной памяти, в которой размещаются автоматические переменные программы, явно или неявно в ней присутствующие. Этот сегмент, очевидно, должен быть динамическим (т.е. доступным и по чтению, и по записи), и он, также очевидно, должен быть частным (приватным) сегментом процесса.
Разделяемый сегмент виртуальной памяти образуется при подключении к ней сегмента разделяемой памяти (см. п. 3.4.1). По определению, такие сегменты предназначены для координированного совместного использования несколькими процессами. Поэтому разделяемый сегмент должен допускать доступ по чтению и по записи и может разделяться несколькими процессами.
Сегменты файлов, отображаемых в виртуальную память (см. п. 2.4.5), представляют собой разновидность разделяемых сегментов. Разница состоит в том, что если при необходимости освободить оперативную память страницы разделяемых сегментов копируются ("откачиваются") в специальную системную область подкачки (swapping space) на диске, то страницы сегментов файлов, отображаемых в виртуальную память, в случае необходимости откачиваются прямо на свое место в области внешней памяти, занимаемой файлом. Такие сегменты также допускают доступ и по чтению, и по записи и являются потенциально совместно используемыми.
На аппаратно-независимом уровне сегментная организация виртуальной памяти каждого процесса описывается структурой as, которая содержит указатель на список описателей сегментов, общий текущий размер виртуальной памяти (т.е. суммарный размер всех существующих сегментов), текущий размер физической памяти, которую процесс занимает в данный момент времени, и наконец, указатель на некоторую аппаратно-зависимую структуру, данные которой используются при отображении виртуальных адресов в физические. Описатель каждого сегмента (несколько огрубляя) содержит индивидуальные характеристики сегмента, в том числе, виртуальный адрес начала сегмента (каждый сегмент занимает некоторую непрерывную область виртуальной памяти), размер сегмента в байтах, список операций, которые можно выполнять над данным сегментом, статус сегмента (например, в каком режиме к нему возможен доступ, допускается ли совместное использование и т.д.), указатель на таблицу описателей страниц сегмента и т.д. Кроме того, описатель каждого сегмента содержит прямые и обратные ссылки по списку описателей сегментов данной виртуальной памяти и ссылку на общий описатель виртуальной памяти as.
На уровне страниц поддерживается два вида описательных структур. Для каждой страницы физической оперативной памяти существует описатель, входящий в один из трех списков. Первый список включает описатели страниц, не допускающих модификации или отображаемых в область внешней памяти какого-либо файла (например, страницы сегментов программного кода или страницы сегмента файла, отображаемого в виртуальную память). Для таких страниц не требуется пространство в области подкачки системы; они либо вовсе не требуют откачки (перемещения копии во внешнюю память), либо откачка производится в другое место. Второй список - это список описателей свободных страниц, т.е. таких страниц, которые не подключены ни к одной виртуальной памяти. Такие страницы свободны для использования и могут быть подключены к любой виртуальной памяти. Наконец, третий список страниц включает описатели так называемых анонимных страниц, т.е. таких страниц, которые могут изменяться, но для которых нет "родного" места во внешней памяти.
В любом описателе физической страницы сохраняются копии признаков обращения и модификации страницы, вырабатываемых конкретной используемой аппаратурой.
Для каждого сегмента поддерживается таблица отображения, связывающая адреса входящих в него виртуальных страниц с описателями соответствующих им физических страниц из первого или третьего списков описателей физических страниц для виртуальных страниц, присутствующих в основной памяти, или с адресами копий страниц во внешней памяти для виртуальных страниц, отсутствующих в основной памяти. (Правильнее сказать, что поддерживается отдельная таблица отображения для каждого частного сегмента и одна общая таблица отображения для каждого разделяемого сегмента.)
Введение подобной обобщенной модели организации виртуальной памяти и тщательное продумывание связи аппаратно-независимой и аппаратно-зависимой частей подсистемы управления виртуальной памятью позволило добиться того, что обращения к памяти, не требующие вмешательства операционной системы, производятся, как и полагается, напрямую с использованием конкретных аппаратных средств. Вместе с тем, все наиболее ответственные действия операционной системы, связанные с управлением виртуальной памятью, выполняются в аппаратно-независимой части с необходимыми взаимодействиями с аппаратно-зависимой частью.
Конечно, в результате сложность переноса той части ОС UNIX, которая относится к управлению виртуальной памятью, определяется сложностью написания аппаратно-зависимой части. Чем ближе архитектура аппаратуры, поддерживающей виртуальную память, к абстрактной модели виртуальной памяти ОС UNIX, тем проще перенос. Для справедливости заметим, что в подавляющем большинстве современных компьютеров аппаратура выполняет функции, существенно превышающие потребности модели UNIX, так что создание новой аппаратно-зависимой части подсистемы управления виртуальной памятью ОС UNIX в большинстве случаев не является чрезмерно сложной задачей.
Страничное замещение основной памяти и swapping
Как мы упоминали в конце п. 3.1.1, в ОС UNIX используется некоторый облегченный вариант алгоритма подкачки, основанный на использовании понятия рабочего набора. Основная идея заключается в оценке рабочего набора процесса на основе использования аппаратно (а в некоторых реализациях - программно) устанавливаемых признаков обращения к страницам основной памяти. (Заметим, что в этом подразделе при описании алгоритма мы не различаем функции аппаратно-независимого и аппаратно-зависимого компонентов подсистемы управления виртуальной памятью.)
Периодически для каждого процесса производятся следующие действия. Просматриваются таблицы отображения всех сегментов виртуальной памяти этого процесса. Если элемент таблицы отображения содержит ссылку на описатель физической страницы, то анализируется признак обращения. Если признак установлен, то страница считается входящей в рабочий набор данного процесса, и сбрасывается в нуль счетчик старения данной страницы. Если признак не установлен, то к счетчику старения добавляется единица, а страница приобретает статус кандидата на выход из рабочего набора процесса. Если при этом значение счетчика достигает некоторого (различающегося в разных реализациях) критического значения, страница считается вышедшей из рабочего набора процесса, и ее описатель заносится в список страниц, которые можно откачать (если это требуется) во внешнюю память. По ходу просмотра элементов таблиц отображения в каждом из них признак обращения гасится.
Откачку страниц, не входящих в рабочие наборы процессов, производит специальный системный процесс-stealer. Он начинает работать, когда количество страниц в списке свободных страниц достигает установленного нижнего порога. Функцией этого процесса является анализ необходимости откачки страницы (на основе признака изменения) и запись копии страницы (если это требуется) в соответствующую область внешней памяти (т.е. либо в системную область подкачки - swapping space для анонимных страниц, либо в некоторый блок файловой системы для страницы, входящей в сегмент отображаемого файла).
Очевидно, рабочий набор любого процесса может изменяться во время его выполнения. Другими словами, возможна ситуация, когда процесс обращается к виртуальной странице, отсутствующей в основной памяти. В этом случае, как обычно, возникает аппаратное прерывание, в результате которого начинает работать операционная система. Дальнейший ход событий зависит от обстоятельств. Если список описателей свободных страниц не пуст, то из него выбирается некоторый описатель, и соответствующая страница подключается к виртуальной памяти процесса (конечно, после считывания из внешней памяти содержимого копии этой страницы, если это требуется).
Но если возникает требование страницы в условиях, когда список описателей свободных страниц пуст, то начинает работать механизм своппинга. Основной повод для применения другого механизма состоит в том, что простое отнятие страницы у любого процесса (включая тот, который затребовал бы страницу) потенциально вело бы к ситуации thrashing, поскольку разрушало бы рабочий набор некоторого процесса). Любой процесс, затребовавший страницу не из своего текущего рабочего набора, становится кандидатом на своппинг. Ему больше не предоставляются ресурсы процессора, и описатель процесса ставится в очередь к системному процессу-swapper. Конечно, в этой очереди может находиться несколько процессов. Процесс-swapper по очереди осуществляет полный своппинг этих процессов (т.е. откачку всех страниц их виртуальной памяти, которые присутствуют в основной памяти), помещая соответствующие описатели физических страниц в список свободных страниц, до тех пор, пока количество страниц в этом списке не достигнет установленного в системе верхнего предела. После завершения полного своппинга каждого процесса одному из процессов из очереди к процессу-swapper дается возможность попытаться продолжить свое выполнение (в расчете на то, что свободной памяти уже может быть достаточно).
Заметим, что мы описали наиболее сложный алгоритм, когда бы то ни было использовавшийся в ОС UNIX. В последней "фактически стандартной" версии ОС UNIX (System V Release 4) используется более упрощенный алгоритм. Это глобальный алгоритм, в котором вероятность thrashing погашается за счет своппинга. Используемый алгоритм называется NRU (Not Recently Used) или clock. Смысл алгоритма состоит в том, что процесс-stealer периодически очищает признаки обращения всех страниц основной памяти, входящих в виртуальную память процессов (отсюда название "clock"). Если возникает потребность в откачке (т.е. достигнут нижний предел размера списка описателей свободных страниц), то stealer выбирает в качестве кандидатов на откачку прежде всего те страницы, к которым не было обращений по записи после последней "очистки" и у которых нет признака модификации (т.е. те, которые можно дешевле освободить). Во вторую очередь выбираются страницы, которые действительно нужно откачивать. Параллельно с этим работает описанный выше алгоритм своппинга, т.е. если возникает требование страницы, а свободных страниц нет, то соответствующий процесс становится кандидатом на своппинг.
В заключение затронем еще одну важную тему, непосредственно связанную с управлением виртуальной памятью - копирование страниц при попытке записи (copy on write). Как мы отмечали в п. 2.1.7, при выполнении системного вызова fork() ОС UNIX образует процесс-потомок, являющийся полной копией своего предка. Тем не менее, у потомка своя собственная виртуальная память, и те сегменты, которые должны быть его частными сегментами, в принципе должны были бы полностью скопироваться. Однако, несмотря на то, что частные сегменты допускают доступ и по чтению, и по записи, ОС не знает, будет ли предок или потомок реально производить запись в каждую страницу таких сегментов. Поэтому было бы неразумно производить полное копирование частных сегментов во время выполнения системного вызова fork().
Поэтому в таких случаях используется техника копирования страниц при попытке записи. Несмотря на то, что в сегмент запись разрешена, для каждой его страницы устанавливается блокировка записи. Тем самым, во время попытки выполнения записи возникает прерывание, и ОС на основе анализа статуса соответствующего сегмента принимает решение о выделении новой страницы, копировании на нее содержимого оригинальной страницы и о включении этой новой страницы на место старой в виртуальную память либо процесса-предка, либо процесса-потомка (в зависимости от того, кто из них пытался писать).
На этом мы заканчиваем краткое описание механизма управления виртуальной памятью в ОС UNIX. Еще раз подчеркнем, что мы опустили множество важных технических деталей, стремясь продемонстрировать наиболее важные принципиальные решения.
Управление процессами и нитями
В операционной системе UNIX традиционно поддерживается классическая схема мультипрограммирования. Система поддерживает возможность параллельного (или квази-параллельного в случае наличия только одного аппаратного процессора) выполнения нескольких пользовательских программ. Каждому такому выполнению соответствует процесс операционной системы. Каждый процесс выполняется в собственной виртуальной памяти, и, тем самым, процессы защищены один от другого, т.е. один процесс не в состоянии неконтроллируемым образом прочитать что-либо из памяти другого процесса или записать в нее. Однако контролируемые взаимодействия процессов допускаются системой, в том числе за счет возможности разделения одного сегмента памяти между виртуальной памятью нескольких процессов.
Конечно, не менее важно (а на самом деле, существенно более важно) защищать саму операционную систему от возможности ее повреждения каким бы то ни было пользовательским процессом. В ОС UNIX это достигается за счет того, что ядро системы работает в собственном "ядерном" виртуальном пространстве, к которому не может иметь доступа ни один пользовательский процесс.
Ядро системы предоставляет возможности (набор системных вызовов) для порождения новых процессов, отслеживания окончания порожденных процессов и т.д. С другой стороны, в ОС UNIX ядро системы - это полностью пассивный набор программ и данных. Любая программа ядра может начать работать только по инициативе некоторого пользовательского процесса (при выполнении системного вызова), либо по причине внутреннего или внешнего прерывания (примером внутреннего прерывания может быть прерывание из-за отсутствия в основной памяти требуемой страницы виртуальной памяти пользовательского процесса; примером внешнего прерывания является любое прерывание процессора по инициативе внешнего устройства). В любом случае считается, что выполняется ядерная часть обратившегося или прерванного процесса, т.е. ядро всегда работает в контексте некоторого процесса.
В последние годы в связи с широким распространением так называемых симметричных мультипроцессорных архитектур компьютеров (Symmetric Multiprocessor Architectures - SMP) в ОС UNIX был внедрен механизм легковесных процессов (light-weight processes), или нитей, или потоков управления (threads). Говоря по-простому, нить - это процесс, выполняющийся в виртуальной п