Реферат: Основные принципы генерирования электромагнитных волн

Процесс взаимодействия потока носителей заряда с полем или электронного прибора с электрической цепью в установившемся режиме работы можно рассматривать по каждой гармонике сигнала. Мощность взаимодействия по 1-й гармонике

(1.3)

где — комплексно-сопряженная амплитуда 1-й гармоники тока, - комплексная амплитуда напряжения.

Рис. 1.7.

Из (1.3) для активной и реактивной составляющих мощности взаимодействия получим

,

где - фазовый угол между двумя векторами (рис. 3.8).

При поток носителей зарядов отдает мощность электромагнитному полю или электронный прибор - электрической цепи.

При , наоборот, поле отдает мощность потоку зарядов и поэтому колебания в устройстве затухают, или вообще не возникают.

Неравенство соблюдается при , т.е. при выполнении условия фазировки. Мощность 1-й гармоники сигнала, передаваемая в активную нагрузку:

, (1.4)

где - разность фаз согласно рис. 1.7.

В выражении (3.3) реактивная составляющая мощности взаимодействия характеризует обмен энергией между потоком и полем по 1-й гармонике сигнала или между электронным прибором и электрической цепью.

Мощность, потребляемая электронным прибором:

(1.5)

С учетом (1.4) и (1.5) КПД генератора

Значение КПД генератора зависит от типа электронного прибора, частоты и мощности усиливаемого сигнала и колеблется от 90% в нижней части ВЧ диапазона до 3 - 5% - в верхней части СВЧ диапазона. Мощность генераторных приборов U колеблется от десятков мегаватт в импульсном режиме работы до долей ватта в непрерывном режиме.

Выводы по главе:

1. Основные электронные приборы, используемые в генераторах:

- электровакуумные приборы (триоды, тетроды и др.);

- полупроводниковые приборы (транзисторы биполярные и полевые, диоды (туннельные, диоды Ганна и лавинно-пролетные));

- клистроны;

- лампы бегущей волны;

- приборы магнетронного типа.

2. Работу различных типов электронных приборов объединяет физический принцип взаимодействия потока носителей заряда (сокращенно - потока) с электромагнитным полем (сокращенно - полем).

Глава 2. ОСНОВЫ ТЕОРИИ ВЧ ГЕНЕРАТОРА С ВНЕШНИМ ВОЗБУЖДЕНИЕМ

2.1. Обобщенная схема генератора с внешним возбуждением и ее анализ

Большое число разнообразных схем ВЧ генераторов с внешним возбуждением, являются частным случаем обобщенной структурной схемы (рис. 2.1,а), состоящей из трех, каскадно-включенных, четырехполюсников (ЧП) - входной и выходной согласующих электрических цепей и электронного прибора - транзистора или лампы.


Рис. 2.1. Обобщенная схема ВЧ генератора с внешним возбуждением

Назначение электрических цепей состоит в согласовании входного и выходного сопротивлений электронного прибора соответственно с источником возбуждения и нагрузкой и в фильтрации высших гармоник сигнала. Электронный прибор может быть представлен в виде генератора тока , имеющего внутреннюю проводимость входного и выходного , сопротивлений (рис. 2.1,б). Все эти элементы являются нелинейными и частотно-зависимыми. Конечная цель анализа работы ВЧ генератора (см. рис. 2.1,а) при подаче на его вход одночастотного сигнала состоит: в определении его энергетических параметров - выходной колебательной мощности ВЧ сигнала, поступающего в нагрузку, ; мощности потребления по постоянному току от источника питания ; коэффициента полезного действия (КПД) , коэффициента усиления по мощности , где - мощность входного источника сигнала;

определение условий оптимального режима работы ВЧ генератора согласно определенному критерию. Такими критериями могут являться: максимум колебательной мощности в нагрузке максимальный КПД , максимальный коэффициент усиления по мощности , минимум искажений, вносимых усилителем в сигнал, максимальная ширина полосы пропускания;

расчете и построении различных характеристик генератора: динамической, нагрузочной, амплитудной, фазоамплитудной, амплитудно-частотной, фазочастотной в одночастотном режиме работы. Определение данных характеристик дается ниже. Дополнительный анализ работы ВЧ генератора может проводиться при усилении модулированных и сложных ВЧ сигналов, например многочастотных. Перечисленные параметры и характеристики ВЧ генератора можно найти с помощью метода гармонической линеаризации (рис. 2.2).

Рис. 2.2. Принцип метода гармонической линеаризации

Электронный прибор и ВЧ генератор в целом являются нелинейными устройствами. В частности, при подаче на вход такого прибора синусоидального напряжения (рис. 2.2,а) сигнал на его выходе искажается (рис. 2.2,б). Согласно разложению функции в ряд Фурье (2.5) сигнал, приведенный на рис. 2.2,б, можно представить в виде суммы постоянной составляющей и нескольких гармоник (рис. 2.2,в). Из этой «смеси» с помощью фильтра можно выделить только 1-ю гармонику сигнала. Именно такую функцию и выполняет выходная согласующая цепь в схеме ВЧ генератора (см. рис. 2.1,а). Поэтому напряжение на нагрузке генератора снова приобретает синусоидальную форму (рис. 2.2,г).

Именно в фильтрации несинусоидального сигнала, выделении из него 1-й гармоники сигнала и преобразовании его вновь в синусоидальный сигнал и состоит метод гармонической линеаризации, лежащий в основе анализа ВЧ генератора. Сам анализ включает в себя:

К-во Просмотров: 296
Бесплатно скачать Реферат: Основные принципы генерирования электромагнитных волн