Реферат: Основы фрактального исчисления
Фрактальное исчисление. По определению, длина есть сумма всех масштабов, т.е., где сумма берется от 1 до N ( d ). Поскольку априори считается N>> 1, то сумму можно заменить некоторым интегралом, который назовем фрактальным, а способ его вычисления - фрактальным исчислением. Итак, определяем
. (8)
Обратим внимание на то, что значок D, указывающий на фрактальную размерность, пишется снизу дифференциала d. Поскольку длина фрактальной линии есть C×d 1- D , то приходим к следующему, первому правилу фрактального исчисления - правилу интегрирования линейной функции:
= C×d 1- D . (9)
Проведем в этой формуле масштабное преобразование: = C×(ld) 1- D . Выражение справа есть l1- D ×C×d 1- D , или, с учетом (9), l1- D × =. Сравнивая с исходным выражением, приходим к следующему закону для фрактального дифференциала:
.
В этом выражении отчетливо видно отличие фрактального дифференциала от дифференциала дробного порядка [11], для последнего. В общем случае для степенной функции можно получить следующее правило фрактального интегрирования:
= C ×d n-D . (10)
Элементарные функции. Фрактальный интеграл от степенной функции получается элементарно. Для этого в выражении (10) достаточно переобозначить d на x:
= C × x n-D . (11)
Для вычисления фрактального интеграла от экспоненциальной функции экспоненту необходимо разложить в ряд, далее применяя для каждого члена ряда формулу (11), окончательно получаем
. (12)
Видим, что экспонента после фрактального интегрирования приобрела нелинейный множитель. Постоянные интегрирования здесь не выписываем, если судить по дробному интегродифференциальному исчислению [11], вопрос о постоянной интегрирования неоднозначен. Интегрирование от тригонометрических функций продемонстрируем на синусе. Представляя функцию синус в экспоненциальной форме и применяя результат (12), в итоге получаем
В этом выражении легко узнать одно из слагаемых в ряде, представляющей нигде не дифференцируемую функцию Вейерштрасса [1,2].
Фрактальное дифференцирование. Как и в обычном случае, будем считать, что фрактальное дифференцирование - это обратная к интегрированию операция. Таким образом, полагаем, что
.
Теперь легко можно установить правила фрактального дифференцирования элементарных функций. Опуская простые вычисления, приведем результаты:
,
,
.
Фрактальные уравнения. Для описания процессов, происходящих в Природе, используют дифференциальные уравнения - второй закон Ньютона, уравнения Максвелла и т.д. В настоящее время неизвестно, в какой форме должны выглядеть законы движения в форме фрактальных производных. Поэтому приведем некоторые возможные виды фрактальных уравнений и их несложные решения. Именно:
,
,
, .
В этой части фактически завершено построение математического аппарата фрактального исчисления. Дальнейшее развитие должно пойти по пути применения к конкретным задачам, по пути совершенствования технических приемов.
Список литературы
Федер Е. Фракталы. - М.: Мир, 1991, 254 с.
Шредер М. Фракталы, хаос, степенные законы. - Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001, 528 с.
Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. - Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001, 128 с.