Реферат: Особливості контролю знань з математики

IX. Властивості тригонометричних функцій. Тотожні перетворення тригонометричних виразів.

X. Тригонометричні рівняння.

XI. Планіметрія.

XII. Стереометрія.

Кожний розділ розбитий на два підрозділи. Наприклад, розділ III ділиться на: раціональні рівняння і системи рівнянь; раціональні нерівності і системи нерівностей. Розділ XI ділиться на: задачі без застосування тригонометрії; задачі з застосуванням тригонометрії.

У кожному підрозділі виділені істотні поняття, теореми, наслідки, формули і властивості, без знання котрих неможливо подальше вивчення математики у вищій школі. Так, у розділі IV абітурієнт повинний знати:

- що при розв’язуванні ірраціональних рівнянь і нерівностей розглядаються тільки арифметичні корені;

- визначення арифметичного кореня;

- що в області дійсних чисел корінь парного степеня з від’ємного числа не існує;

- як розв’язуються ірраціональні рівняння;

- як виникають сторонні корені і як губляться корені;

- властивості нерівностей у застосуванні до знаходження області визначення ірраціонального виразу;

- деякі штучні прийоми розв’язування ірраціональних рівнянь із радикалами ступеня вище другий;

- приведення радикалів до подібного виду;

- звільнення від ірраціональності в знаменнику і чисельнику дробу.

Ступінь трудності задач, вправ, прикладів визначається набором використовуваних елементів знань. Проте для розв’язування задач однакової складності може знадобитися різний час. У процесі контролю з застосуванням ЕОМ тимчасовий критерій використовується як параметр складності задачі, вправи, прикладу. Трудомісткість розв’язування задач першого рівня складності складає від 5 до 10 хв., другого – від 15 до 20, третього – від 25 до 30, четвертого і п’ятого – більш 30 хв.

При підготовці до розв’язування задач особливу увагу варто приділити розборові тих задач і прикладів, що приводяться в шкільних підручниках по кожному розділу і темі. Необхідно доводити розв’язок кожної задачі до кінцевого числового результату.

Варіанти першого – третього рівнів складності повинні містити задачі, що потребують для свого розв’язку знання фактичного матеріалу й уміння робити найпростіші логічні операції; варіанти четвертого і п’ятого рівнів – задачі, розв’язок яких припускає не тільки знання фактичного матеріалу, але й уміння логічно мислити, використовувати алгебраїчні перетворення при рішенні геометричних задач, наявність просторової уяви.

Помилки які допускаються при розв’язуванні задач можна умовно розбити на три види:

а) помилки обчислень;

б) незнання формул;

в) незнання алгоритмів розв’язання задач конкретного типу.

Помилки обчислень особливо істотні при машинному опрацюванні результатів іспиту, тому що при правильному виборі алгоритму розв’язування задачі недбалість в обчисленнях хоча б в однім місці спричиняє за собою визнання задачі цілком нерозв’язаною.

Незнання формул, невміння вибрати з них найбільш важливі, що призводять до раціонального розв’язку, змушує вдаватись до менш раціональних шляхів розв’язування задачі, що ускладнює розрахунок і часто збільшує можливість одержання помилкової відповіді. Крім цього, на розв’язок задачі витрачається багато часу.

Незнання алгоритмів розв’язання задач конкретного типу пов’язано з відсутністю творчого підходу до розв’язування задач, невмінням логічно мислити, синтезувати при розв’язанні проблемних задач різноманітні розділи математики – алгебру, геометрію і тригонометрію.

Використання ЕОМ для опрацювання результатів контролю знань потребує одержання числової відповіді в задачі. Це скорочує можливі помилки операторів при введенні цих результатів у пам’ять ЕОМ. Тому у формулювання завдань звичайно вводиться додаткова вимога, що визначає, який саме розв’язок необхідно вибрати із сукупності отриманих.

Наведемо приклади можливих формулювань завдань:

- знайти найбільше (найменше) ціле значення х, щозадовольняє визначеній умові або системі умов;

- знайти більший (менший) корінь рівняння;

К-во Просмотров: 186
Бесплатно скачать Реферат: Особливості контролю знань з математики