Реферат: Парадокс времени

Отсюда следует третье требование , которое необходимо ввести. Некоторые события должны обладать способностью, изменять ход эволюции, т.е. эволюция должна быть не стабильной, т.е. характеризоваться механизмом, способным делать некоторые события исходным пунктом нового развития.

Теория эволюции Дарвина служит прекрасной иллюстрацией всех трех сформулированных выше требований. Необратимость очевидна: она существует на всех уровнях от новых экологических ниш, которые в свою очередь открывают новые возможности для биологической эволюции. Теория Дарвина должна была объяснить поразительное событие – возникновение видов, но Дарвин описал это событие как результат сложных процессов.

Дарвинский подход дает лишь модель. Но каждая эволюционная модель должна содержать необратимость события и возможность для некоторых событий стать отправным пунктом для нового порядка.

В отличие от дарвинского подхода термодинамика XIX века, сосредотачивает основное внимание на равновесии отвечающему только первому требованию, т.к. она выражает не семетричность между прошлым и будущим.

Однако за последние 20 лет термодинамика претерпела значительные изменения. Второе начало термодинамики более не ограничивается описанием выравнивания различий, которым сопровождается приближение к равновесию.

3. Основные проблемы и понятия парадокса времени

Парадокс времени "ставит перед нами проблему законов природы"[1, 5]. Эта проблема требует более детального рассмотрения. По Аристотелю живые существа не подчиняются никаким законам. Их деятельность обусловлена их собственными автономными внутренними причинами. Каждое существо стремится к достижению своей собственной истины. В Китае господствовали взгляды о спонтанной гармонии космоса, своего рода статистическом равновесии, связывающем воедино природу, общество и небеса[1].

Не маловажную роль сыграли и христианские представления о Боге как о устанавливающем законы для всего живого.

Для Бога все есть данность. Новое, выбор или спонтанные действия относительны с человеческой точки зрения. Подобные теологические воззрения, казалось, полностью подкреплялись открытием динамических законов движения. Теология и наука достигли согласия.

Понятие хаоса вводится, т.к. хаос позволяет разрешить парадокс времени и приводит к включению стрелы времени[1] в фундаментальное динамическое описание. Но хаос делает и нечто большее. Он привносит вероятность в классическую динамику.

Парадокс времени не существует сам по себе. С ним тесно связаны два других парадокса: "квантовый парадокс" и "космологический парадокс".

Между парадоксом времени и квантовым парадоксом существует тесная аналогия. Сущность квантового парадокса заключается в том, что ответственность за коллапс несет наблюдатель и производимые им наблюдения. Следовательно аналогия между двумя парадоксами заключается в том, что человек отвечает за все особенности, связанные со становлением и событиями в нашем физическом описании.

Теперь, надо отметить третий парадокс – космологический парадокс. Современная космология приписывает нашей вселенной возраст. Вселенная родилась в результате большого взрыва около 15млд. лет назад. Ясно, что это было событием. Но в традиционную формулировку понятий законов природы события не входят. Это и поставило физику на грань величайшего кризиса. Хокинг написал о Вселенной так: "…она просто должна быть, и все!"[5, 123].

4. Классическая динамика и хаос

4.1 Теория КАМ

С появлением работ Колмогорова, продолженных Арнольдом и Мозером, - так называемой теории КАМ[2] - проблему не интегрируемости перестали рассматривать как проявление сопротивления природы прогрессу, а начали рассматривать как новый отправной пункт дальнейшего развития динамики[1].

Теория КАМ рассматривает влияние резонансов на траектории. Следует отметить, что простой случай гармонического осциллятора с постоянной частотой, не зависящей от переменной действия J, является исключением: частоты зависят от значений принимаемых переменными действия J. В различных точках фазового пространства фазы различны. Это приводит к тому, что в одних точках фазового пространства динамической системы существует резонанс, тогда как в других точках резонанса нет. Как известно, резонансы соответствуют рациональным соотношениям между частотами. Клас­сический результат теории чисел сводится к утверждению, что мера рациональных чисел по сравнению с мерой иррациональных чисел рав­на нулю. Это означает, что резонансы встречаются редко: большинство точек в фазовом пространстве нерезонансные. Кроме того, в отсутствие возмущений, резонансы приводят к пери­одическому движению (так называемые резонансные торы), тогда как в общем случае мы имеем квазипериодическое движение (нерезонансные торы). Можно сказать кратко: периодические движения — не правило, а исключение.

Таким образом, мы вправе ожидать, что при введении возмущений характер движения на резонансных торах резко изменится (по теореме Пуанкаре), в то время как квазипериодическое движение изменится незначительно, по крайней мере при малом параметре возмущения (теория КАМ требует выполнения дополнительных условий, которые мы не будем здесь рассматривать). Основной результат теории КАМ состоит в том, что теперь мы имеем два совершенно различных типа траекторий: слегка изменившиеся квазипериодические траектории и стохастические j траектории, возникшие при разрушении резонансных торов [3].

Наиболее важный результат теории КАМ — появление стохастических траекторий — подтверждается численными экспериментами. Рассмотрим систему с двумя степенями свободы. Ее фазовое пространство содержит две координаты q 1, q 2 и два импульса p1, р2. Вычисления производятся при данном значении энергии H ( q 1, q 2, p 1, p 2), и поэтому остается только три независимых переменных. Чтобы избежать построения траекторий в трехмерном пространстве, условимся рассматривать только пересечение траекторий с плоскостью q 2 p 2. Для еще большего упрощения картины мы будем строить только половину этих пересечений, а именно учитывать только такие точки, в которых траектория «пронзает» плоскость сечения снизу вверх. Таким приемом пользовался еще Пуанкаре, и он называется сечением Пуанкаре (или отображением Пуанкаре). В сечении Пуанкаре отчетливо видно качественное различие между периодическими и стохастическими траекториями.

Если движение периодическое, то траектория пересекает плоскость q2p2 в одной точке. Если движение квазипериодическое, т.е ограничено поверхностью тора, то последовательные точки пересечения заполняют на плоскости q 2 p 2 замкнутую кривую. Если же движение стохастическое, то траектория случайным образом блуждает в некоторых областях фазового пространства, и точки ее пересечения так же случайным образом заполняют некоторую область на плоскости q2р2.

Еще один важный результат теории КАМ состоит в том, что, увеличивая параметр связи, мы тем самым увеличиваем области, в которых преобладает стохастичность. При некотором критическом значении параметра связи возникает хаос: в этом случае мы имеем положительный показатель Ляпунова, соответствующий экспоненциальному разбеганию со временем любых двух близких траекторий. Кроме того, в случае полностью развитого хаоса облако точек пересечения, порождаемое траекторией, удовлетворяет уравнениям типа уравнения диффузии[1].

Уравнения диффузии обладают нарушенной сим­метрией во времени. Они описывают приближение к равномерному распределению в будущем (т. е. при t —> +∞). Поэтому весьма интересно, что в компьютерном эксперименте, исходя из программы, составленной на основе классической динамики, мы получаем эволюцию с нарушенной симметрией во времени.

Следует подчеркнуть, что теория КАМ не приводит к динамической теории хаоса.Ее главный вклад состоит в другом: теория КАМ показала, что при малых значениях параметра связи мы имеем проме­жуточный режим, в котором сосуществуют траектории двух типов — регулярные и стохастические. С другой стороны, нас интересует глав­ным образом то, что произойдет в предельном случае, когда снова останется лишь один тип траекторий. Эта ситуация соответствует так называемым большим системам Пуанкаре (БСП). К их рассмотрению мы сейчас переходим.

4.2. Большие системы Пуанкаре

При рассмотрении предложенной Пуанкаре классификации динамических систем на интегрируемые и неинтегрируемые мы отметил, что резонансы встречаются редко, поскольку возникают в случае рациональных соотношений между частотами. Но при переходе к БСП ситуация радикально изменяется: в БСП резонансы играют главную роль.

Рассмотрим в качестве примера взаимодействие между какой-нибудь частицей и полем. Поле можно рассматривать как суперпозицию осцилляторов с континуумом частот wk . В отличие от поля частица совершает колебания с одной фиксированной частотой w 1 . Перед нами пример неинтегрируемой системы Пуанкаре. Резонансы будут возникать всякий раз, когда wk =w 1 . Во всех учебниках физики показано, что испускание излучения обусловлено именно такими резонансами между заряженной частицей и полем. Испускание излучения представляет собой необратимый процесс, связанный с резонансами Пуанкаре.

Новая особенность состоит в том, что частота wk есть непрерывная функция индекса k , соответствующая длинам волн осцилляторов поля. Такова специфическая особенность больших систем Пуанкаре, т. е. хаотических систем, у которых нет регулярных траекторий, сосуществующих со стохастическими траекториями. Большиесистемы Пуанкаре (БСП) соответствуют важным физическим ситуациям, в действительности — большинству ситуаций, с которыми мы сталкиваемся в природе. Но БСП позволяют также исключить расходимости Пуанкаре, т. е. устранить основное препятствие на пути к интегрированию уравнений движения. Этот результат, заметно приумножающий мощь динамического описания, разрушает отождествление ньютоновской или гамильтоновой механики и обратимого во времени детерминизма, поскольку уравнения для БСП в общем случае приводят к принципиально вероятностной эволюции с нарушенной симметрией во времени.

Обратимся теперь к квантовой механике. Между проблемами, с которыми мы сталкиваемся в классической и квантовой теории, существует аналогия, поскольку предложенная Пуанкаре классификация систем, на интегрируемые и неинтегрируемые остается в силе и для квантовых систем.

5.Решение парадокса времени

5.1.Законы хаоса

Трудно говорить о «законах хаоса», пока мы рассматриваем отдельные траектории. Мы имеем дело с негативными аспектами хаоса, такими как экспоненциальное разбегание траекторий и не вычислимость. Ситуация резко меняется, когда мы переходим к вероятностному описанию. Описание в терминах вероятностей остается в силе при любых временах. Поэтому и законы динамики надлежит формулировать на вероятностном уровне. Но этого не достаточно. Чтобы включить в описание нарушение симметрии во времени, мы должны выйти из обычного гильбертова пространства. В рассмотренных ними здесь простых примерах необратимые процессы определялись только временем Ляпунова, но все приведенные соображения могут быть обобщены и на более сложные отображения, описывающие необратимы! процессы другого типа, например, диффузию [2].

Полученное нами вероятностное описание несводимо: это неизбежное следствие того, что собственные функции принадлежат к классу обобщенных функций. Как уже упоминалось, этот факт можно использовать в качестве отправного пункта нового, более общегоопределенияхаоса. В классической динамике хаос определяется "экспоненциаль­ным разбеганием"[1] траекторий, но такое определение хаоса не допускает обобщения на квантовую теорию. В квантовой теории нет "экспоненциального разбегания" волновых функций и, следовательно, не существует чувствительности к началь­ным условиям в обычном смысле. Тем не менее, существуют квантовые системы, характеризующи­еся несводимыми вероятностными описаниями. Помимо прочего такие системы имеют принципиальное значение для нашего описания при­роды. Как и прежде, фундаментальные законы физики применительно к таким системам формулируются в виде вероятностных утверждений (а не в терминах волновых функций). Можно сказать, что такие системы не позволяют отличить чистое состояние от смешанных состояний. Даже если мы выберем в качестве исходного, чистое состояние, оно со временем превратится в смешанное состояние.

Исследование описанных в этой главе отображений представляет большой интерес. Эти простые примеры позволяют наглядно предста­вить, что мы имеем в виду, говоря о третьей, несводимой, формулировке законов природы. Тем не менее, отображения — не более чем абстракт­ные геометрические модели. Теперь же мы обратимся к динамическим системам на основе гамильтонова описания — фундамента современ­ной концепции законов природы.

5.2.Квантовый хаос

Квантовый хаос отождествляется с существованием несводимого вероятностного представления. В случае с БСП в основе такого представления лежат резонансы Пуанкаре.

Следовательно, квантовый хаос связан с разрушением инварианта движения вследствие резонансов Пуанкаре. Это свидетельствует о том, что в случае БСП невозможно переходить от амплитуд |φi + > к вероятностям |φi + > <φi + |. Фундаментальное уравнение в данном случае записывается в терминах вероятности. Даже если начать с чистого состояния ρ=|ψ> <ψ|, оно разрушится в ходе движения системы к равновесию.

К-во Просмотров: 479
Бесплатно скачать Реферат: Парадокс времени