Реферат: Перемешивание жидкостей
9 ПЕРИОДОВ
Рис 2. ВЫТЯГИВАНИЕ И ОБРАЗОВАНИЕ СКЛАДОК при хаотическом перемешивании. Наблюдение ведется с помощью последовательного фотографирования изменений формы пробной капли красного цвета.
Условия эксперимента те же, что в опытах, показанных на рис. 1. Вытянуто-складчатая структура отчетливо видна уже после трех периодов движения. Зеленый «остров», указывающий на область в основном нехаотического перемешивания, и складки, соответствующие участкам хаотического перемешивания, движутся относительно стенок полости, возвращаясь в первоначальное положение (в некоторой степени деформированными) после каждого периода. Небольшой отросток, образовавшийся у зеленой капли, показывает, что она совершает сложное вращение. Если провести эксперимент в обратном порядке, то зеленая капля практически
восстановит форму и возвратится в начальное положение, поскольку ошибка в описании ее движения при обратном прохождении увеличивается линейно. Обратное восстановление красной капли совершенно невозможно, поскольку в этом случае ошибка растет экспоненциально.
То, что для достижения более эффективного перемешивания материала необходимо часть его возвращать в первоначальное положение, противоречит обычным представлениям. Тем не менее, если смешивание проводится в ограниченной системе, альтернативы не существует. Если, например, периодически пускать стрелы в цель, со временем какая-нибудь из них случайно попадает очень близко к другой — просто по той причине, что площадь мишени ограниченна. Точно так же при многократном повторении вытягиваний и изгибов участков жидкости в замкнутой полости некоторые частицы в определенный момент времени обязательно окажутся сколь угодно близко к своему первоначальному положению.
Если через некоторое время в периодически меняющемся потоке частица возвращается точно в свое первоначальное положение, то она определяет так называемую периодическую точку. В зависимости от числа периодов, необходимых для возврата частицы в первоначальное положение, эти точки называют периодическими с периодом один, два и т. д. Их можно классифицировать так же, как эллиптические и гиперболические в зависимости от направления потока в непосредственной близости от них.
Поскольку эллиптическая периодическая точка циклически движется по замкнутой траектории, частицы жидкости вблизи этой точки не только циркулируют вокруг нее (как это было бы в случае неподвижной эллиптической точки), но и перемещаются вместе с ней. Однако, несмотря на то, что в этой области частицы жидкости совершают вращательное и поступательное движения, перемещения вещества в остальную часть жидкости не происходит. Такие области видны как «островки»; перемешивание в них идет медленно. Поскольку вещество не может ни войти, ни покинуть окрестность эллиптической периодической точки, такие точки представляют собой препятствия для эффективного перемешивания.
Подобным образом при циклическом движении гиперболической периодической точки окружающее ее вещество, движущееся вместе с этой точкой, испытывает сокращение в одном направлении и вытягивание в другом. При этом точка как бы выталкивает наружу вытянутые участки в одном направлении и втягивает вещество с другого направления. (Если считать жидкость несжимаемой, вытягивания и сокращения должны компенсировать друг друга.)
Следы хаоса
Куда уходит вещество от гиперболической периодической точки? Откуда оно приходит? Одна из возможностей состоит в том, что втекающий поток непрерывно переходит в вытекающий, т. е. материал, вышедший из гиперболической точки, приходит обратно к ней или к другой гиперболической точке. Именно такой механизм осуществляется в стационарных потоках (когда гиперболические точки фиксированы и не являются периодическими), поэтому эффективного вытягивания и образования складок не происходит.
Нестационарные двумерные потоки могут приводить к эффективному перемешиванию, поскольку в этом случае отток, связанный с одной гиперболической периодической точкой, может пересекать область вытекающего потока этой же или какой-либо другой гиперболической точки. Точку, в которой пересекаются втекающий и вытекающие потоки, связанные с одной гиперболической точкой, называют трансверсальной гомоклинной точкой. Если эти пересекающиеся потоки связаны с двумя разными гиперболическими точками, то точку пересечения потоков называют трансверсальной гетероклинной точкой.
Рис 3.ПЕРЕМЕШИВАНИЕ ЖИДКОСТЕЙ в природных явлениях и производственных процессах происходит как в результате вытягивания и образования складок, так и под влиянием диффузии и разрушения капель. Только в идеальном случае окрашенная капля (слева вверху) может бесконечно вытягиваться и складываться, не испытывая разрывов и не диффундируя в соседние области (вверху справа). Интересно, что в такой гипотетической ситуации для достижения эффективного перемешивания часть такой пробной капли должна вернуться в исходное положение. Процессы молекулярной диффузии (без которых невозможно эффективное перемешивание) обычно приводят к размыванию границ между двумя растворимыми жидкостями (слева внизу). В случае нерастворимых жидкостей пробная капля может разрушиться на множество брызг, которые затем сливаются в капли меньшего размера, чем исходная (справа внизу). |
Гомоклинные и гетероклинные пересечения — характерные следы хаоса. С математической точки зрения система, в которой могут возникать подкововидные структуры или транс-версальные гомо- или гетероклинные пересечения, может считаться хаотической. Оказывается, что в потоке, описываемом подкововидной структурой, обязательно должны присутствовать трансверсальные гомо-клинные точки; точно так же наличие хотя бы одной такой точки означает, что поток описывается подкововидной структурой.
Оказывается, даже единственное пересечение втекающего и вытекающего потоков с неизбежностью приводит к появлению трансверсальных гомоклинных точек и что подобные пересечения могут возникать даже в таких «хороших» системах, как системы, описываемые законами движения Ньютона. Этот факт впервые был открыт в XIX в. французским математиком Анри Пуанкаре. Однако сложность анализа течения жидкости при наличии такого пересечения (подобное состояние системы сейчас называют хаосом) поразила Пуанкаре, и он решил больше не заниматься этой проблемой.
Если перемешивание может быть представлено детерминированным точечным преобразованием, оно должно быть кинематически обратимым. Иными словами, совершив все движения в обратном порядке, можно было бы разделить смешанные жидкости (если пренебречь молекулярной диффузией). Однако повседневный опыт показывает, что смешивание необратимо. Даже если теоретически система детерминирована, движения, приводящие к повторяющимся вытягиваниям и образованию складок, не могут быть обращены во времени.
Подобная ситуация встречается и в других физических системах. Примером может служить изученная Пуанкаре система, состоящая из большого числа частиц, относительное движение которых описывается детерминированными уравнениями (так называемыми гамильтоновыми уравнениями). Выдающийся американский физик XIX в. Дж. Уиллард Гиббс пришел к выводу, что даже гамильтоновым системам присущи необратимость и непредсказуемость. Показательно в этом отношении, что для иллюстрации необратимости им был предложен гипотетический эксперимент, в котором рассматривалось перемешивание. По-видимому, вывод Гиббса оставался незамеченным до тех пор, пока в 1955 г. в одном из журналов не была опубликована статья шведского океанолога П. Велландера.
Хаос в потоках жидкости
Значение вытягивания и изгиба в процессе перемешивания стало понятно специалистам по химической технологии еще в 50-х годах, после того как была опубликована первая работа на эту тему Р. Спенсера и Р. Уайлииз Dow Chemical Company и У. Мора с сотрудниками из Е.I. du Pont de Nemours & Company, Inc. Результат этой работы — доказательство существования подкововидных контурных диаграмм и гомоклинных и гетероклинных точек — оставался неоцененным в полной мере до недавнего времени.
Первым, кто указал на прямую связь между хаосом и потоками жидкости, был советский математик В.И. Арнольд. В 1965 г. Арнольд предположил, что в жидкостно-механических системах траектории частиц могут быть хаотическими. Французский астроном из Обсерватории в Ницце М. Эно развил идею Арнольда и в статье объемом всего три страницы с одним рисунком смог показать, что стационарный трехмерный поток жидкости, не обладающей вязкостью, может сформировать хаотические линии тока.
В 1984 г. X. Ареф из Университета Брауна обнаружил, что уравнения, описывающие траектории частиц жидкости в двумерном потоке, формально идентичны уравнениям, описывающим гамильтоновы системы. Развивая это наблюдение путем компьютерного моделирования, он доказал, что в гамильтоновой системе под действием периодически меняющихся сил может происходить эффективное перемешивание.
Если в трехмерном случае прямой связи между перемешиванием и гамильтоновой системой не существует, для двумерных систем эта связь однозначна: перемешивание жидкости можно рассматривать как наглядное проявление хаотического поведения гамильтоновой системы. Работа Арефа и простота лабораторного изучения двумерных систем по сравнению с трехмерными вдохновили меня на эксперименты по наблюдению признаков хаоса. Мы использовали специальный прибор для изучения потоков в замкнутой полости, который был сконструирован в 1983 г. совместно с моими студентами в Амхерсте.
Фотографирование
Студенту-дипломнику К. Ленгу и мне удалось определить приблизительное расположение нескольких периодических точек и крупномасштабных структур в двумерном потоке с помощью фиксирования стробоскопических изображений исследуемой системы (поскольку нас интересовало быстрое перемешивание, основное внимание уделялось поведению периодических точек низкого порядка, т. е. с периодом один, два, три; точки более высокого порядка участвуют в процессе намного реже). В типичном эксперименте пробные капли флуоресцирующего красителя вводились в определенные места прямоугольной полости, которая освещалась ультрафиолетовым излучением; стенки полости приводились в заданное движение и затем положения капель и искажение их формы фотографировались через равные промежутки времени.
Рис 4. ЭЛЛИПТИЧЕСКИЕ И ГИПЕРБОЛИЧЕСКИЕ ТОЧКИ типичны для медленных двумерных потоков. Такой поток показан на снимке внизу, сделанном Ленгом и автором статьи. Поток глицерина в прямоугольной полости инициировался движением двух ее боковых стенок в противоположных направлениях с постоянной скоростью. Оранжевые полосы пробной жидкости (располагавшейся в начальный момент времени по диагонали от нижнего левого угла до верхнего правого угла полости) почти соответствуют линиям тока, т. е. линиям, по которым движутся частицы жидкости в стационарном потоке. На фотографии потока видны три фиксированные точки: центральная гиперболическая и две эллиптические по обе стороны от нее. Вокруг каждой эллиптической точки (вверху) образуются водовороты, вращающиеся по часовой стрелке. При движении вокруг этих точек длина оранжевой полосы растет пропорционально времени. К гиперболической точке жидкость течет в одном направлении, а от нее — в другом. Поскольку жидкость не может пересекать линии тока, подобные стационарные потоки неэффективны для перемешивания. Однако, если поток изменять во времени, оранжевый след пробной жидкости не будет успевать подстраиваться за меняющимися линиями тока, и на нем быстро образуются складки при изменении направления потока. |
Если перемешивание шло эффективно, то окрашенные частицы распространялись по большому участку системы, если нет — краситель переходил из капли в остальную часть системы медленно или сами пробные капли оставались вблизи эллиптических периодических точек.
В другой серии экспериментов, которые мы выполнили со студентом-дипломником П. Свэнсоном, основное внимание было сконцентрировано на потоках, для которых существуют точные аналитические решения уравнений движения жидкости. Это давало наилучшую возможность сравнить экспериментальные результаты с предсказаниями теории.
К сожалению, число систем, для которых получены точные аналитические решения, довольно невелико, и многие из них настолько сильно идеализированы, что воспроизвести их в условиях лабораторного эксперимента невозможно. Одна из систем, допускающая точное решение и пригодная для эксперимента, представляет собой поток между двумя вращающимися эксцентрическими цилиндрами.
Такая система исследовалась также Арефом (сейчас он работает в Калифорнийском университете в Сан-Диего) и М. Тейбором и Р. Шевре из Колумбийского университета.
Рис 5. МОДЕЛЬ МИКСЕРА, разработанная Дж. Франьоном и автором статьи, иллюстрирует основной процесс перемешивания — вытягивание и образование складок (а). Линия, нарисованная на плоской ячейке жидкости, вытягивается и изгибается, образуя складки, когда нож миксера пересекает ее сначала в направлении перпендикулярном ей (b), а затем — параллельном ей (с). Линия вытягивается не разрываясь. Любой ее участок, покидающий ячейку, возвращается с противоположной стороны. Перемешивание в такой системе может быть смоделировано на компьютере. Внизу показаны компьютерные изображения линии, состоящей из 100 000 точек после 16 циклов перемешивания в разных условиях. Перемешивание может быть ограничено отдельными участками ячейки (d) или может охватить всю ячейку (е) в зависимости от того, насколько «энергично» оно проводилось. |
Многочисленные эксперименты с двумерными хаотическими потоками показали, что крупномасштабные структуры в перемешиваемой жидкости (такие как положения и формы «островов» и крупных складок) хорошо воспроизводимы; более мелкие детали этой вытянуто-складчатой структуры невоспроизводимы. Причина заключается в том, что небольшой разброс начальных положений окрашенных капель быстро растет на хаотических участках потока. Так и должно быть: точное воспроизведение рассматриваемого процесса перемешивания невозможно. В конце концов перемешивание приводит к полной хаотичности. Именно это и достигается с помощью процедуры вытягивания и образования складок, которая применялась в наших экспериментах.
Интересно также, как в таком потоке могут сосуществовать хаос и симметрия, связанная с периодическими точками. Систематически исключая симметрию из хаотического потока, нам удалось повысить эффективность перемешивания.
Сравнение результатов экспериментов и компьютерного моделирования
Достаточно простую экспериментальную систему (для которой можно вычислить поле скоростей) легко смоделировать на компьютере. Типичная программа заключается в том, что некоторое число пробных точек помещают в моделируемое поле скоростей. Вычисленные положения точек после около 1000 периодов дают хорошую общую картину поведения системы по истечении длительного времени. Изображение, полученное в результате такого моделирования, называют сечением Пуанкаре. Если сечение Пуанкаре выглядит достаточно сложно, его считают доказательством наступления хаоса (см. верхний рисунок справа). Компьютерное моделирование процесса перемешивания обнаруживает также черты необратимости, но в этом случае невоспроизводимость обусловлена экспоненциальным ростом ошибки, вносимой компьютером, поскольку он может обрабатывать числа только с конечным количеством знаков.