Реферат: Перспективы использования водорода в энергетике
В качестве катализаторов в топливных элементах чаще всего применяют платину и её сплавы с не менее драгоценным палладием. Этот материал позволяет значительно облегчить процесс ионизации водорода. В реакции участвуют только атомы, находящиеся на поверхности, поэтому для каталитических целей применяют платину в виде наночастиц (так называемой платиновой черни). Однако в процессе нанесения дорогостоящей платины наиболее распространенным методом аэрографии её потери достаточно велики, что еще более удорожает конечный продукт.
Техасские специалисты во главе с Питером Страссером предлагают использовать сплав платины с кобальтом и медью.
Новый катализатор представляет собой частицы сплава, содержание металла в которых изменяется от поверхности к ядру: поверхность частиц обогащена платиной, а ядро состоит преимущественно из меди и кобальта. Первые испытания этого катализатора показали эффективность, превышающую аналогичный показатель современных катализаторов для топливных элементов в 4–5 раз.
Вдобавок нанокатализатор оказался существенно дешевле.
Для производства катализатора нанесенные на графитовый электрод частицы сплава помещаются в раствор кислоты и подвергаются циклическому воздействию переменного напряжения. Менее благородные металлы, в особенности медь, растворяются с поверхности, оставляя её обогащенной платиной. Ядро же имеет тот же состав, что и исходный сплав.
Более того, образовавшиеся в результате электрохимического травления меди и кобальта пустоты на поверхности частиц приводят не только к обогащению поверхности платиной, но и к значительному увеличению площади поверхности катализатора. Тем не менее, увеличение эффективности катализатора в 4–5 раз по сравнению с чистой платиновой чернью, по мнению Страссера, не может быть объяснено исключительно увеличением площади поверхности.
Компьютерные расчеты показали, что расстояние между атомами платины в обогащенной ей оболочке короче по сравнению с этой дистанцией в чистой платине. Такое «сжатое» состояние фиксируется с помощью обогащенного кобальтом и медью ядра. Сокращенное межатомное расстояние платина–платина, по всей видимости, способствует более легкой адсорбции кислорода. Это же, судя по всему, изменяет электронную структуру оболочки так, что процесс переноса электрона с образованием отрицательно заряженной молекулы кислорода становится значительно упрощенным.
Типы топливных элементов
Существуют различные типы ТЭ. Их обычно классифицируют по используемому топливу, рабочему давлению и температуре, а также по характеру применения.
Наибольшее распространение получила классификация топливных элементов по типу электролита как среды для внутреннего переноса ионов (протонов). Электролит между электродами определяет операционную температуру и от этой температуры зависит тип катализатора.
Выбор топлива и окислителя, подаваемых в ТЭ, определяется, в первую очередь, их электрохимической активностью (то есть скоростью реакции на электродах), стоимостью, возможностью легкого подвода топлива и окислителя в ТЭ и отвода продуктов реакции из ТЭ.
Водород считается основным источником топлива для ТЭ, однако процесс преобразования топлива позволяет извлекать водород и из других его видов, включая метанол, природный газ, нефть и др.
В отличии от аккумулятора и батареек, ТЭ не истощается и не требует перезарядки; он работает, пока подается топливо.
Щелочной ТЭ (AFC) |
Электролит состоит из жидкого KOH, который циркулирует в пространстве между электродами. Они использовались с середины 1960-х годов в космических программах, обеспечивая питанием электрические системы космических кораблей "Буран", "Шаттл" и др. Коммерческое применение их ограничено, т.к. они должны работать с чистыми водородом и кислородом (либо с кислородом воздуха, из которого удален углекислый газ). Щелочные ТЭ имеют КПД до 70% |
ТЭ на протонообменной мембране (PEMFC) |
В качестве электролита используется твердая полимерная мембрана (тонкая пластмассовая пленка), которая проводит водородные ионы (протоны) с анода на катод. Они обеспечивают высокую плотность тока, что позволяет уменьшать их вес, стоимость, объем и улучшать качество работы. Неподвижный твердый электролит упрощает герметизацию в процессе производства, уменьшает коррозию, и обеспечивает более долгий срок службы ТЭ. Эти ТЭ работают при низких температурах (ниже 100.С), что ускоряет запуск и реакцию на изменения потребности в электричестве. Они идеально подходят для транспорта и стационарных установок небольшого размера. |
ТЭ на фосфорной кислоте (PAFC) |
Электролитом является бумажная матрица, насыщаемая фосфорной кислотой, также проводящей протоны. Это наиболее разработанные коммерчески развитые ТЭ. Они применяются в стационарных электрогенераторных устройствах в зданиях, гостиницах, больницах, аэропортах и электростанциях. ТЭ на фосфорной кислоте вырабатывают электричество с КПД более 40% или около 85%, если пар, который производит этот ТЭ, используется для совместного производства тепла и электричества (в сравнении с 30% КПД наиболее эффективного двигателя внутреннего сгорания). |
ТЭ на расплаве карбоната (MCFC) |
Использует расплавленную смесь лития/калия (или лития/натрия) для проведения ионов карбоната от катода к аноду. Рабочая температура - приблизительно 650°C, что позволяет использовать топливо напрямую, без какой-либо дополнительной его подготовки, и никель в качестве катализатора. Их конструкция более сложна, чем конструкция ТЭ на фосфорной кислоте, из-за их более высокой рабочей температуры и использования расплава электролита. Им требуется существенное количество времени для того, чтобы они достигли рабочей температуры и смогли реагировать на изменения в потребности в электричестве, и поэтому лучше всего они подходят для условий, где необходима постоянная подача больших количеств электроэнергии. Наибольшее количество подобных установок построено в США и Японии. В США имеется демонстрационная опытная электростанция мощностью 1.8 МВт. |
К-во Просмотров: 271
Бесплатно скачать Реферат: Перспективы использования водорода в энергетике
|