Реферат: Планеты Земной группы
Элементы орбиты Марса, найденные Кеплером, мало отличались от современных. Например, большая полуось орбиты по Кеплеру равнялась 1,5264 астрономической единицы ( а. е. ), тогда как современное её значение 1,5237 а. е. Эксцентриситет орбиты Марса по Кеплеру равен 0.0934.
Уже из приведённых чисел видно, что Марс расположен от Солнца в полтора раза меньше, и, значит, получает от Солнца в 2,3 раза меньше света и тепла. Расстояние Марса от Солнца составляет в среднем 228 млн. км, тогда как Земля отстоит от дневного светила на 150 млн. км.
Благодаря большому эксцентриситету орбиты Марс может изменять своё расстояние от Солнца в довольно широких пределах. Чтобы найти, на сколько расстояние в ближайшей к Солнцу точке орбиты, перигелии, меньше среднего, надо помножить среднее расстояние на эксцентриситет. Получим:
228 ۰ 0,093 = 21 млн. км.
Кратчайшее расстояние Марса от Солнца равно 207 млн. км, а наибольшее-249 млн. км. Эти величины относятся как 1/1,2 , а поток солнечного света и тепла на единицу поверхности Марса в перигелии и афелии как 1,44/1.
Чтобы понять, как можети зменяться положение Марса относительно, Земли, рассмотрим основные конфигурации этой планеты.
Пусть Земля при движении по орбите вокруг Солнца S находится в положении Т . На орбите Марса отметим четыре важных положения планеты: соединение К, когда планета находится за Солнцем, на продолжении прямой ТS, квадратуры Q1 и Q2, когда угол между направлениями на Солнце и планету равен 90°, и противостояние О, когда планета находится снова на продолжении прямой ТS, но в направлении, противоположном Солнцу (отсюда и выражение противостояние)
Легко видеть, что в противостоянии планета расположена ближе всего к Земле, а в соединении расстояние между ними максимально. Поэтому эпоха соединения - самый неблагоприятный период для наблюдения Марса, а эпоха противостояния, наоборот, самый благоприятный.
По условиям видимости не все противостояния равноценны по двум причинам. Во-первых, из-за эксцентриситета орбиты Марса его расстояние от Земли в момент противостояния может меняться от 56 до 100 млн. км. Во-вторых, склонение, а значит, и высота планеты над горизонтом различны для разных противостояний.
Те противостояния, при которых расстояние до Марса не превышает 60 млн. км, принято называть великими. Очевидно, в период великих противостояний Марс должен быть вблизи перигелия. Если соединить перигелий орбиты Марса с Солнцем прямой линией, то она пересечёт орбиту Земли в той точке, которую Земля проходит 29 августа. Поэтому даты великих противостояний Марса приходятся обычно на август или сентябрь (исключением был 1939 г., когда великое противостояние наступило 23 июля).
Великие противостояния следуют с интервалом 15 или 17 лет. Чтобы понять существующую здесь закономерность, вспомним, что период обращения Марса вокруг Солнца равен 287 суткам. Синодический период планеты, т.е. интервал от одного противостояния до следующего, определяется по формуле 1/s=1/т-1/р, где Р=687 сут.- год Марса, Т=365,25 сут. - год Земли. Из этой формулы находим S=780 суткам, т.е. синодический период Марса равен 2 годам 50 суткам.
Марс вращается вокруг своей оси почти так же, как и Земля: его период вращения равен 24 час. 37 мин. 23 сек., что на 41 мин.19 сек. Больше периода вращения Земли. Ось вращения наклонена к плоскости орбиты на угол 65°, почти равный углу наклона земной оси (66,5°). Это значит, что смена дня и ночи, а так же смена времён года на Марсе протекает почти так же, как на Земле. Там есть и тепловые пояса ,подобные земным .
Но есть и отличия. Прежде всего, из-за удалённости от Солнца климат, вообще суровее Земного. Далее год Марса почти вдвое длиннее земного, а значит, дольше длятся и сезоны. Наконец из-за эксцентриситета орбиты длительность и характер сезонов заметно отличаются в северном и южном полушариях планеты.
Таким образом, в северном полушарии лето долгое, но прохладное , а зима короткая и мягкая, тогда как в южном полушарии лето короткое, но тёплое, а зима долгая и суровая.
Масса Марса была довольно точно определена по движению его спутников Фобоса и Деймоса, а теперь уточнена по движению искусственных спутников серии «Маринер». Она равна 1:3 098 700 доле массы Солнца, или 0,107 массы Земли, или 6,42۰10*26г. Отсюда средняя плотность Марса получается 3,89 г\см*3, ускорение силы тяжести на его поверхности на экваторе 372 см \ сек*2 (0,38 Земного) и критическая скорость, достаточная для преодоления притяжения планеты, 5,0 км \ сек.
Таковы общие характеристики Марса как планеты, которые во многом определяют условия на Марсе: состояние его атмосферы, климат, ветровой режим.
СПУТНИКИ МАРСА
11 и 17 августа 1877 г. Асаф Холл на Вашингтонской обсерватории открыл два маленьких спутника Марса – Фобос и Деймос. Размеры их дисков были не различимы ни в один телескоп, а блеск в среднем противостоянии соответствовал 11,6 и 12,8 звёздной величины. Это свидетельство об их весьма малых размерах. Блеск Марса в среднем противостоянии равен –1,65 , звёздной величины, значит, Марс в 200 000 раз ярче Фобоса и в 600 000 раз ярче Деймоса. Отсюда следует, что диаметры обоих спутников меньше диаметра Марса в 450 и 770 раз соответственно, т.е. раны 15 и 9 км.
В действительности, как показали фотографии «Маринера-9» в 1971 году , оба спутника больше. Фобос имеет размеры 27 на 20 км , Деймос 15 на 11 км. Недооценка размеров спутников получилась потому, что их поверхность оказалась темнее Марсианской.
Периоды обращения спутников вокруг планеты составляют 7 час. 39 мин. у Фобоса и30 час. 21 мин. у Деймоса, их расстояние от центра планеты 9400 и 23500км. Орбиты почти круговые, их наклон к экватору Марса у Фобоса 1°, у Деймоса 2,7°.
Таким образом, Фобос совершает обращение вокруг планеты втрое быстрее, чем сам Марс вращается вокруг своей оси. За сутки Марса Фобос успевает совершить три полных оборота и успевает пройти ещё дугу в 78°. Для Марсианского наблюдателя он восходит на западе и заходит на востоке. Между последовательными верхними кульминациями Фобоса проходит 11 часов 07 минут.
Совсем иначе движется по небу Деймос. Его период обращения больше периода вращения Марса, но ненамного. Поэтому он хотя и «нормально» восходит на востоке и заходит на западе, но движется по небу Марса крайне медленно. От одной верхней кульминации до следующей проходит 130 часов – пять с лишним суток !
В 1945 г. американский астроном Б. Шарплес обнаружил вековое ускорение в движении Фобоса по орбите. Это означало, что Фобос, строго говоря, движется по очень пологой спирали, постепенно приближаясь к поверхности Марса. Если так будет продолжаться и дальше, то через 15 млн. лет – срок с космогонической точки зрения весьма небольшой – Фобос упадёт на Марс.
Однако только через 14 лет на это обратили внимание. К тому времени появились небесные тела, двигавшиеся точно таким же образом. Это были первые искусственные спутники Земли. Торможение в земной атмосфере заставило их снижаться, а приближение к центру Земли вызвало ускорение их движения.
Известный советский учёный И. С. Шкловский попытался в 1959г. подсчитать, не может ли торможение в самых верхних слоях атмосферы Марса, быть причиной векового ускорения Фобоса. Результат был неожиданным: это возможно только в том случае если Фобос… полый. Тогда он, подобно воздушному шару, будет испытывать заметное сопротивление окружающей газовой среды. Однако эта гипотеза, наделавшая в своё время много шума, не подтвердилась. Фотографии «Маринера-9» показали, что Фобос и Деймос имеют вид громадных каменных глыб.
Наблюдения «Маринера-9» показали, что оба спутника обращены к Марсу одной стороной (как Луна к Земле). Для установления такого вращения достаточно
Только сотен тысяч лет для Фобоса в виду его близости к Марсу.
Непосредственные фотографии, фотоэлектрические и поляризационные наблюдения указывают на то, что наружный слой поверхности обоих спутников – мелко раздробленная пыль, слой которой имеет толщину около 1 мм. Её состав, по-видимому, базальтовый со значительной примесью карбонатов. Инфракрасные наблюдения свидетельствуют о крайне низкой теплопроводности наружного покрова, что подтверждает гипотезу о пылевом слое.
АТМОСФЕРА И ФИОЛЕТОВЫЙ СЛОЙ МАРСА.
В тоже великое противостояние 1909г., когда Французский астроном Антониади наблюдал Марс в 83-сантиметровый рефрактор Медонской обсерватории, в другом месте земного шара были впервые получены снимки Марса со светофильтрами. Этим местом была Пулковская обсерватория, где тогда ещё молодой русский учёный Гавриил Андрианович Тихонов.
Г. А. Тихонову удалось получить большую серию снимков Марса с различными светофильтрами от красного до зелёного. Их обработка позволила обнаружить три явления, получившие названия «эффектов Тихонова».