Реферат: Поляризационная структура излученного сигнала, принятого сигнала. Когерентное объединение (накопление) сигнала в поляризационных каналах
где - максимальное значение коэффициента рассеяния (отражения) вибратора при облучении его линейно поляризованной волной, ректор поля которой параллелен оси вибратора.
Пример 2. Поляризационная матрица рассеяния сферы в любом базисе:
.
Пример 3. Поляризационная матрица рассеяния вибратора (рис. 5) в наклоненном линейном базисе, один из ортов которого параллелен оси вибратора, т.е. в собственном поляризационном базисе:
.
Таким образом, вибратор является в общем случае объектом рассеяния, изменяющим поляризационную структуру облучающей волны. Объекты рассеяния радиоволн, обладающие деполяризующими свойствами, называются анизотропными в поляризационном смысле. Таких объектов -подавляющее большинство. Сфера является объектом рассеяния, не изменяющим поляризационную структуру облучающей волны. Такие объекты называются изотропными в поляризационном смысле. Изотропными являются любые осесимметричные объекты, еслиих ось симметрии совпадает с направлением на систему. Для изотропных объектов . Следует обратить внимание на некоторую условность понятия изотропного в поляризационном смысле объекта наблюдения. Эта условность касается направления вращения вектора поля. Сохранение направления вращения вектора поля при отражении как необходимое условие изотропности объекта наблюдения, предполагает наблюдение обеих волн (падающей и отраженной в обратном направлении) по нормали к фронту каждой волны.
???. 2.10.5. ????????
Рис. 6. Поворот базиса в плоскости поляризации
Однако в большинстве случаев предполагается наблюдение обеих волн с какой-то одной стороны (со стороны РЛС или объекта). При этом направление вращения вектора поля отраженной волны меняется на противоположное по сравнению с падающей волной. Эта условность, конечно, не может изменить представления об изотропности (в поляризационном смысле) объекта наблюдения.
Теперь обратимся ко второму явлений при отражении электромагнитной волны - декорреляции ее поляризационной структуры. Прежде всего отметим, что отраженная волна является линейным преобразованием падающей волны, причем свойства этого линейного преобразования определяются поляризованной матрицей рассеяния:
.
Данное обстоятельство свидетельствует о том, что четыре компоненты отраженного сигнала, соответствующие двум взаимно ортогональным поляризациям на прием при двух взаимно ортогональных поляризацияхна излучение
,
,
,
,
являются сильно коррелированными, т.е., функционально линейно зависимыми, если соответствующие комплексные амплитуды взаимно ортогональных по поляризации составляющих падающего поля и являются сильно коррелированными, а также если объект наблюдения (цель) в поляризационном смысле является стабильным, т.е. параметры его поляризационной матрицы рассеяния не изменяются (не флуктуируют) случайным образом, а если и изменяются, то "дружно". Последнее характерно для целей (объектов наблюдения) с жесткой конструкцией, у которых положение в пространствеодних отражателей, определяющих компоненту с одной поляризацией, зависит от расположения других отражателей, определяющих компоненту с ортогональной поляризацией.
Напротив, если объект наблюдения имеет нежесткую или "мягкую" конструкцию, например, совокупность пространственно распределенных элементарных отражателей, когда положение в пространстве одних отражателей не зависит от расположения других и эти отражатели являются анизотропными в поляризационном смысле, то приведенные выше четыре компоненты рассеянного поля оказываются некоррелированными, а рассеянная волна хаотически поляризованной (неполяризованной). Такая ситуация характерна для мешающих отражений от объемно или поверхностно распределенных отражателей, обладающих свойством поляризационной анизотропности.
В случае поляризационно изотропных отражателей, обладающих свойством осевой симметрии по направлению на РЛС, две компоненты рассеянного поля и принципиально отсутствуют, поскольку , а компоненты и рассеянного поля с учетом равенства диагональных элементов матрицы рассеяния будут сильно коррелированными, если сильно коррелированными являются комплексные амплитуды падающего поля и . Эта ситуация характерна для объемно распределенных гидрометеоров (дождь, снег, туман, град, пыль), отражатели которых имеют осесимметричную (как правило, сферическую) форму.
Таким образом, при анализе корреляционных свойств ортогонально поляризованных составляющих отраженного (рассеянного) сигнала или мешающих отражений следует учитывать во взаимосвязи ряд факторов:
- степень жесткости конструкции объекта наблюдения,
- степень поляризационной изотропности элементарных отражателей, из которых состоит объект наблюдения;
- степень коррелированности комплексных амплитуд и падающего поля.
Принципы поляризационной обработки сигналов на фоне помех
Под поляризационной обработкой понимается некоторый способ объединения поляризационных каналов многоканальной по поляризации системы. Принципы поляризационной обработки можно сформулировать на основании общих принципов пространственно-временной обработки:
- подавление помех путем междуканального вычитания коррелированных ортогонально поляризованных составляющих мешающих колебаний (излучений и отражений;
- накопление сигнала путем междуканального сложения (когерентного или некогерентного) коррелированных ортогонально поляризованных составляющих отраженного сигнала.
Когерентное объединение (накопление) сигнала в поляризационных каналах.
Основой когерентного объединения сигнала в поляризационных каналах многоканальной по поляризации РЛС является его сильная межканальная корреляция, характерная для объектов наблюдения с жесткой конструкцией. При этом оптимальная процедура объединения сигналов с разных каналов сводится ких взвешенному когерентному накоплению (рис. 7).
Максимально возможная эффективность когерентного поляризационного объединения сигналов определяется числом поляризационных каналов :