Реферат: Полиномы Чебышева
y (x) =a 0 +a 1 x+a 2 x 2 +…+ a m x m
Вычисленная кривая у (х) в некотором смысле создаёт сложное множество значений у i. Метод наименьших квадратов утверждает, что следует выбирать многочлен, который приводит функцию к минимуму
Для нахождения минимума дифференцируем � по каждой из неизвестных a k. В результате получим:
Определитель этой системы отличен от нуля и задача имеет единственное решение. Но система степеней не ортогональна, и при больших значениях n задача плохо обусловлена.
Эту трудность можно обойти, используя многочлены ортогональные с заданным весом на заданной системе точек, но к этому прибегают только в задачах, связанных с особенно тщательной статической обработкой эксперимента
Полиномы Чебышева
Критерии согласия данного метода - минимизация максимальной ошибки Полиномы Чебышева определяются следующим образом: T n (x) = cos (n Ч arccos (x))
Например: T 0 (x) = cos (0) =1,T 1 (x) = cos (q) = x,
T 2 (x) = cos (2 q) =cos 2 (q) - sin 2 (q) =2x 2 - 1
Можно было бы и дальше использовать тригонометрические соотношения для нахождения полиномов Чебышева любого порядка, но будет лучше установить для них рекурентное соотношение, связывающее T n +1 (x), T n (x) и T n - 1 (x):
T n+1 (x) = cos (n q + q) = cos (n q) cos (q) - sin (n q) sin (q),
T n-1 (x) = cos (n q - q) = cos (n q) cos (q) - sin (n q) sin (q)
Складывая эти неравенства, получим:
T n +1 (x) + T n - 1 (x) =2 cos (n q) cos (q) =2 xT n (x);
T n+1 (x) =2xT n (x) - T n-1 (x)
Применяя полученные формулы можно найти любой полином Чебышева. Например, Т 3 (x) =2 xT 2 (x) - T 1 (x). Подставляя значения T 2 (х) и Т 1 (х) имеем Т 3 (х) =2х (2х 2 - 1) - х=4х 3 - 3х. Графически первые 10 полиномов Чебышева изображены ниже. Последующие полиномы по-прежнему колеблются между +1 и - 1, причём период колебания уменьшаются с ростом порядка полинома
Преобразования q = arccos (x) можно рассмотреть как проекцию пересечений полукруга с множеством прямых, имеющих углы равные между собой (рис.1). Таким образом, множество точек x j, на котором система чебышевских многочленов T n (x) ортогональна, есть:
(j =0, 1, 2, …, N - 1)
Так как T n (x) есть, по существу, cos (n q), то они являются равноколеблющимися функциями, и так как они многочлены, то обладают всеми свойствами, которые имеют ортогональные многочлены
Чебышев доказал, что из всех многочленов Р n (x) степени n старшим коэффициентом 1, у многочлена точная верхняя грань абсолютных значений на интервале - 1 Ј x Ј 1 наименьшая. Так как верхняя грань T n (x) =1, указанная верхняя грань равна
Практическое задание
На практике нам необходимо было изучить приближение нашей функции полиномами Тейлора.
Как уже упоминалось выше, многочлены Тейлора легко вычисляются, а так же превращаются в степенные ряды. В этом нам удалось убедится на практике.
Ниже приведена таблица коэффициентов первых двенадцати полиномов Чебышева, а также таблица коэффициентов перед полиномами Чебышева, выражающие первые двенадцать степеней.
Эти данные мы получили, используя программы на страницах.
В этих программах были использованы следующие алгоритмы: Преобразование коэффициентов полинома Чебышева в коэффициенты традиционного многочлена.
Вводим коэффициенты a 0, a 1, …, a n многочлена T (x) и образуем массив a i. Для j =2, 3, …, n и k = n, n - 1, …, j в первом случае поднимаясь, а во втором спускаясь, осуществляем преобразование коэффициентов по следующим формулам:
а) a k-1 =a k-2 - a k
б) a k =2a k
В результате получаем коэффициенты полинома P n (x)
Преобразование коэффициентов полинома P n (x) в коэффициенты полинома T n (x)