Реферат: Полное исследование функций и построение их графиков

3. Интервалы выпуклости и вогнутости функции

Еще одной характеристикой графика функции, которую можно определять с помощью производной, является его выпуклость или вогнутость.

Определение 3.1 . Функция называется выпуклой на промежутке , если ее график расположен ниже любой касательной, проведенной к нему на данном промежутке, и наоборот, называется вогнутой, если ее график окажется выше любой касательной, проведенной к нему на данном промежутке .

Докажем теорему, позволяющую определять интервалы выпуклости и вогнутости функции.

Теорема 3.1 . Если во всех точках интервала вторая производная функции непрерывна и отрицательна, то функция выпукла и наоборот, если вторая производная непрерывна и положительна, то функция вогнута .

Доказательство проведем для интервала выпуклости функции. Возьмем произвольную точку и проведем в этой точке касательную к графику функции (рис. 3.1). Теорема будет доказана, если будет показано, что все точки кривой на промежутке лежат под этой касательной. Иначе говоря, необходимо доказать, что для одних и тех же значений ординаты кривой меньше, чем ординаты касательной, проведенной к ней в точке .

Рис. 3.1

Для определенности обозначим уравнение кривой: , а уравнение касательной к ней в точке : или . Составим разность и :

.

Применим к разности теорему о среднем Лагранжа (п. 14.2):

,

где .

Применим теперь теорему Лагранжа к выражению в квадратных скобках:


,

где . В нашем случае, как видно из рисунка, , тогда и . Кроме того, по условию теоремы, . Перемножая эти три множителя, получим, что , что и требовалось доказать.

Определение 3.2 . Точка, отделяющая интервал выпуклости от интервала вогнутости, называется точкой перегиба .

Из определения 3.1 следует, что в данной точке касательная пересекает кривую, то есть с одной стороны кривая расположена ниже касательной, а с другой – выше.

Теорема 3.2 . Если в точке вторая производная функции равна нулю или не существует, а при переходе через точку знак второй производной меняется на противоположный, то данная точка является точкой перегиба .

Доказательство данной теоремы следует из того, что знаки по разные стороны от точки различны. Значит, с одной стороны от точки функция выпукла, а с другой – вогнута. В этом случае, согласно определению 3.2, точка является точкой перегиба.

Исследование функции на выпуклость и вогнутость проводится по той же схеме, что и исследование на экстремум.

4. Асимптоты функции

В предыдущих пунктах были рассмотрены методы исследования поведения функции с помощью производной. Однако среди вопросов, касающихся полного исследования функции, есть и такие, которые с производной не связаны.

Так, например, необходимо знать, как ведет себя функция при бесконечном удалении точки ее графика от начала координат. Такая проблема может возникнуть в двух случаях: когда аргумент функции уходит на бесконечность и когда при разрыве второго рода в конечной точке уходит на бесконечность сама функция. В обоих этих случаях может возникнуть ситуация, когда функция будет стремиться к некоторой прямой, называемой ее асимптотой.

Определение . Асимптотой графика функции называется прямая линия, обладающая тем свойством, что расстояние от графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат .

Различают два типа асимптот: вертикальные и наклонные.

К вертикальным асимптотам относятся прямые линии , которые обладают тем свойством, что график функции в их окрестности уходит на бесконечность, то есть, выполняется условие: . Очевидно, что здесь удовлетворяется требование указанного определения: расстояние от графика кривой до прямой стремится к нулю, а сама кривая при этом уходит на бесконечность. С таким поведением функций мы сталкивались в п. 11.1, когда речь шла о разрывах второго рода. Итак, в точках разрыва второго рода функции имеют вертикальные асимптоты, например, в точке . Следовательно, определение вертикальных асимптот функции совпадает с нахождением точек разрыва второго рода.

Наклонные асимптоты описываются общим уравнением прямой линии на плоскости, то есть . Значит, в отличие от вертикальных асимптот, здесь необходимо определить числа и .

Итак, пусть кривая имеет наклонную асимптоту, то есть при точки кривой сколь угодно близко подходят к прямой (рис. 4.1). Пусть – точка, расположенная на кривой. Ее расстояние от асимптоты будет характеризоваться длиной перпендикуляра . Согласно определению, . Но вычисляется довольно сложно, гораздо проще найти .

К-во Просмотров: 544
Бесплатно скачать Реферат: Полное исследование функций и построение их графиков