Реферат: Применимость петрологии к разведке месторождений

Пригодность минералов для анализа флюидных включений

Минералы, вмещающие флюидные включения, должны быть прозрачными, чтобы их было можно просматривать в толстых шлифах (до 1 мм), содержать включения достаточного размера, быть стабильными во времени, устойчивыми при вскрытии нагреванием и относительно многочисленными. Самыми лучшими минералами в эпитермальных и порфировых месторождениях, в порядке полезности, являются: кварц, ангидрит, кальцит и другие карбонаты, сфалерит, барит, флюорит, адуляр.

Другие минералы могут использоваться, но реже и результаты исследований могут быть менее надежными. Так, например, флюидные включения в гематите, пирите, вольфрамите и боурноните были успешно исследованы, но требуют использования инфракрасного света.

Физические основы. Гидротермы, образующие кристаллы, возможно, были однофазными (жидкими или надкритическими) или двухфазными (жидкость+пар, то-есть кипение). Включения, образовавшиеся из однофазных гидротерм, используются наиболее часто, но присутствие других типов включений также интересно и значительно. Если однофазные гидротермы захватываются при «высоких» температурах, то по мере их остывания в недрах системы в них образуются газовые пузырьки. Если они разогреваются, то будут превращаться в одну фазу (гомогенизировать) при некоторой температуре. Главным допущением при исследовании флюидных включений является тот факт, что температура гомогенизации связана (но необязательно она такая же) с температурой образования минералов.

Проблемы. Имеется ряд трудностей и ограничений при анализе флюидных включений, которые необходимо учитывать, чтобы избежать неверных выводов.

1.Необходимо осознавать, что эта методика базируется на статистике. Одно включение имеет ограниченную ценность, поскольку любое индивидуальное включение образовано в результате взаимодействия многих процессов. Местоположение включений является многозначительным фактором, а местонахождение проб имеет ещё большую ценность. Тренды более важны, чем абсолютные значения. Нельзя сосредоточиваться лишь на изолированных отдельных измерениях. В связи с этим лучше рассматривать средние значения измерений, поскольку они менее подвержены крайним оценкам.

2.Если первичные гидротермы были не однофазными, то отношение газа к жидкости не будет одним и тем же во всех включениях, поскольку они захватывались из разных смесей жидкость+пар. Температуры гомогенизации будут в этом случае колебаться в более широких интервалах. Однако превышение пара по занимаемому объёму более важно, чем превышение жидкой фазы. Такой ряд температур гомогенизации будет систематически завышен (рис. 6, 11.7).

Хотя такие данные ещё можно использовать, но необходимо ввести ограничения. По-видимому, более правильные температуры образования минералов соответствуют самым низким обычным показаниям, но не отдельным значениям. Эту ситуацию можно расшифровать, если имеются большие интервалы отношений жидкости и пара в, примерно, одинаковых на первый взгляд включениях и большие пределы колебаний температур гомогенизации. Возможно, имеются иные минералогические индикаторы кипения, такие, например, как присутствие плоских кристаллов кальцита.

3. Температура отложения отдельного кристалла может изменяться во времени. Следовательно, необходимо отследить систематический тренд температуры гомогенизации, так, например, по мере роста кристалла, в связи с чем, случайные замеры температур не будут иметь значения. Это может проявиться в бимодальном (или полимодальном) распределении температур.

4. Некинг (отсекание пузырьков сужением вытянутого включения «обжим»). Рост кристалла может продолжаться после отложения, включая рост внутренней грани с включениями, что сопровождается изменениями физических пропорций (долей фаз) включений. Это может часто наблюдаться при их появлении. Некоторые минералы менее подходящие, чем другие. Такие включения не дают надежных температур гомогенизации и, если они встречаются, то не могут привлекаться для измерений.

5.Если процесс некинга продолжается достаточно долго, то это может привести к изоляции вторичных включений (рис..8). Разделение фаз между вторичными включениями может быть не однородным, в связи с чем, будут формироваться ложные формы (но они будут более или менее случайно распределёнными вокруг среднего) (рис..9). В других случаях образование вторичных флюидных включений может быть обусловлено вторичным дроблением. Процесс полезно распознать, поскольку он может дать ключ ко времени рудной минерализации. Этот метод более часто применяется в порфировых месторождениях, поскольку их история отношений температура-давление более продолжительная и более сложная.


6. Каждое включение является «выстрелом без прицела» во времени. Следовательно, необходимо тщательно отнестись к трендам роста и т. д. Изучение флюидных включений необходимо проводить в комбинации с хорошей петрографией. Они бесполезны без этих исследований, так, как не известно, что нужно измерять. Также возможны систематические изменения. Так, например, в эпитермальных месторождениях обычным процессом является переход кварца в более крупно кристаллический и более пористый. Таким образом, кристаллы поздних стадий являются лучшими объектами для изучения флюидных включений и поэтому чаще подвергаются исследованиям, но они составляют только часть жилы. Также и халцедон не содержит пригодных для исследований флюидных включений. Даже если он перекристаллизуется в более крупные кристаллы кварца, то может содержать лишь вторичные включения. Таким образом, некоторые данные по флюидным включениям сомнительные. Эпизод, для которого были измерены температуры гомогенизации, может не являться причиной рудной минерализации. Эти данные всё же могут быть полезными, но необходимо понимание текстурных и парагенетических взаимоотношений.

7. Коррекция давления. Как минералы, так и флюиды ответственны за давление, а также и за температуры. Они вызывают систематические изменения температуры гомогенизации: ряд эффектов могут сделать изменяемые температуры гомогенизации меньшими, чем температуры отложения минералов. Это можно откорректировать, но, что бы эту процедуру выполнить, необходимо знать (или рассчитать) давление, при котором происходило отложение минералов, и минерализацию гидротермальных растворов (рис..10). Давление может оцениваться по геологическим условиям (рис.. 11), а минерализация может измеряться (см. далее). В метаморфических жилах давление создает большую разницу (> 100°С) температур гомогенизации и, следовательно, результаты измерений должны интерпретироваться с большой осторожностью.

В порфировых структурах коррекция меньшая, обычно около 50°С. В эпитермальных жилах требуется максимальная коррекция около 10°С. В этом случае, получаемые данные находятся в пределах точности других допущений и в связи с этим обычно поправками пренебрегают. Но это необходимо иметь в виду. Этот факт является одной из причин, почему корреляция между температурой флюидных включений и минералогией не всегда соблюдается даже в эпитермальных жилах (и это также имеет значение для определения минералов-геотермометров на основании термометрии по флюидным включениям). Этот аспект должен рассматриваться при исследовании жильных текстур, которые могут свидетельствовать о фазовом состоянии гидротем. Если это так, то, по-видимому, давление, при котором происходило образование минералов, будет меньше гидростатического давления, и коррекция давления будет небольшой, создавая большую уверенность в полученных результатах.

8. Измеряемые включения могут быть не презентативными для события, которое изучается. Поскольку существуют трудности в наблюдениях флюидных включений в непрозрачных минералах, то обычно внимание концентрируется на флюидных включениях в прозрачных жильных минералах и делается допущение, что условия рудообразования для них такие же, как полученные по этим минералам. Инфракрасные исследования флюидных включений в непрозрачных минералах показали, что хотя непрозрачные минералы и кварц проявляются в одних и тех же текстурных условиях в одно и то же время, то данные по флюидным включениям могут быть применимы и в этом случае.

Ключом к преодолению многих из этих ограничений является петрографический анализ перед началом измерений флюидных включений. Следовательно, нельзя проводить исследования флюидных включений без предварительного изучения шлифов, особенно, в районах с неизвестным геологическим строением.

Оценки минерализации гидротермальных растворов

Минерализация может определяться двумя методами:

- измерением снижения точки замерзания;

- определением температуры растворения дочерних кристаллов.

Главным допущением, на котором базируется метод понижения точки замерзания, является то, что ионная концентрация гидротермальных растворов вызывает постепенное снижение их точки замерзания. Снижение точки замерзания может быть связано с моляльной концентрацией растворов. Допускается, что это может быть раствор NaCl. Это допущение является приемлемым для эпитермальных гидротерм, которые имеют низкую минерализацию, но мало надёжно для месторождений, более глубоко расположенных, или VHMS, которые могут содержать гиперминерализованные рассолы. Многовалентные ионы могут также влиять на это допущение.

Присутствие большой доли СО2 также важно, но обычно она влияет на температуры гомогенизации, на газообразные включения, на нижние первые точки плавления льда или повышает, а не понижает, последние точки плавления льда вследствие формирования сеточек. Влияние СО2 при высоких её концентрациях проявляется в показаниях повышенной кажущейся минерализации, чем она есть в реальности (рис..12, 11.13). В связи с этим, считаем уместным, напомнить, что тренды минерализации являются более важной информацией, чем отдельно взятые измерения.

Графики минерализации относительно температур гомогенизации могут показать разбавление, кипение или тренды остывания. Физически точки замерзания труднее наблюдать, чем температуры гомогенизации. Необходимо исследовать более крупные и более прозрачные включения. В связи с этим обычно делается меньше измерений в каждом образце. Также исследования более длительные и, следовательно, более дорогие.

К-во Просмотров: 344
Бесплатно скачать Реферат: Применимость петрологии к разведке месторождений