Реферат: Производство меди

Очень интересна величена потенциалов ионизации: для одного электрона - 7,69, для двух - 20,2. Обе цифры очень велики, особенно вторая, показывающая большую трудность отрыва наружных электронов. Одновалентная медь является равноквантовой и потому ведет к бесцветным солям и слабо окрашенным комплексам, тогда как разноквантовя двух валентная медь характеризуется окрашенностью солей в соединении с водой.

Медь - металл сравнительно мало активный. В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Она достаточно легко вступает в реакции с галогенами, серой, селеном. А вот с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют.

Электроотрицательность атомов - способность при вступлении в соединения притягивать электроны. Электроотрицательность Cu2+ - 984 кДЖ/моль, Cu+ - 753 кДж/моль. Элементы с резко различной ЭО образуют ионную связь, а элементы с близкой ЭО - ковалентную. Сульфиды тяжелых металлов имеют промежуточную связь, с большей долей ковалентной связи (ЭО у S-1571, Cu-984, Pb-733). Медь является амфотерным элементом - образует в земной коре катионы и анионы.

Медь входит более чем в 198 минералов, из которых для промышленности важны только 17, преимущественно сульфидов, фосфатов, силикатов, карбонатов, сульфатов. Главными рудными минералами являются халькопирит CuFeS2 , ковеллин CuS, борнит Cu5 FeS4 , халькозин Cu2 S.

Окислы: тенорит, куприт. Карбонаты: малахит, азурит. Сульфаты: халькантит, брошантит. Сульфиды: ковеллин, халькозин, халькопирит, борнит.

Чистая медь - тягучий, вязкий металл красного, в изломе розового цвета, в очень тонких слоях на просвет медь выглядит зеленовато-голубой. Эти же цвета, характерны и для многих соединений меди, как в твердом состоянии, так и в растворах.

Понижение окраски при повышении валентности видно из следующих двух примеров:

CuCl - белый, Cu2 O - красный, CuCl2 +H2 O - голубой, CuO - черный

Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем намечается интересный практический признак для поисков.

Практическое значение имеют: самородная медь, сульфиды, сульфосоли и карбонаты (силикаты).

СЫРЬЕ ДЛЯ ПОЛУЧЕНИЯ МЕДИ

Для получения меди применяют медные руды, а также отходы меди и ее сплавов. В рудах содержится 1-6% меди.

В рудах медь обычно находится в виде сернистых соединений (медный колчедан или халькопирит CuFeS2 , халькозин Cu2 S, ковелин CuS), оксидов (куприт Cu2 O, тенорит CuO) или гидрокарбонатов (малахит CuCO3 × Cu(OH2 ), азурит 2CuCO × Cu(OH)2 ).

Пустая порода состоит из пирита FeS, кварца SiO2 , карбонатов магния и кальция (MgCO3 и CaCO3 ), а также из различных силикатов, содержащих Al2 O3 , CaO, MgO и оксиды железа.

В рудах иногда содержится значительное количество других металлов: цинк, олово, никель, золото, серебро, кремний и другие.

Руда делится на сульфидные, окисленные и смешанные. Сульфидные руды бывают обычно первичного происхождения, а окисленные руды образовались в результате окисления металлов сульфидных руд.

В небольших количествах встречаются так называемые самородные руды, в которых медь находится в свободном виде.

ПИРОМЕТАЛЛУРГИЧЕСКИЙ СПОСОБ ПРОИЗВОДСТВА МЕДИ.

Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.

Первый из них не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличии от пирометаллургического не позволяет извлечь попутно с медью драгоценные металлы.

Второй способ пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению.

Основу этого процесса составляет плавка, при которой расплавленная масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений.

Жидкий штейн продувают в конвертерах воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди.

Черновую медь далее подвергают рафинированию – очистке от примесей.

Подготовка руд к плавке.

Большинство медных руд обогащают способом флотации. В результате получают медный концентрат, содержащий 8-35% Cu, 40-50% S, 30-35% Fe и пустую породу, главным образом составляющими которой являются SiO2 , Al2 O3 и CaO.

Концентраты обычно обжигают в окислительной среде с тем, чтобы удалить около 50% серы и получить обожженный концентрат с содержанием серы, необходимым для получения при плавке достаточно богатого штейна.

Обжиг обеспечивает хорошее смешение всех компонентов шихты и нагрев ее до 550-600 0 С и, в конечном итоге, снижение расхода топлива в отражательной печи в два раза. Однако при переплавке обожженной шихты несколько возрастают потери меди в шлаке и унос пыли. Поэтому обычно богатые медные концентраты (25-35% Cu) плавят без обжига, а бедные (8-25% Cu) подвергают обжигу.

Температура обжига концентратов применяют многоподовые печи с механическим перегреванием. Такие печи работают непрерывно.

Выплавка медного штейна

Медный штейн, состоящий в основном из сульфидов меди и железа (Cu2 S+FeS=80-90%) и других сульфидов, а также окислов железа, кремния, алюминия и кальция, выплавляют в печах различного типа.

Комплексные руды, содержащие золото, серебро, селен и теллур, целесообразно обогащать так, чтобы в концентрат была переведена не только медь, но и эти металлы. Концентрат переплавляют в штейн в отражательных или электрических печах.

Сернистые, чисто медные руды целесообразно перерабатывать в шахтных печах.

К-во Просмотров: 1849
Бесплатно скачать Реферат: Производство меди