Реферат: Разработка и исследования авторегулируемого токоприемника
Динамическое исследование авторегулируемого токопртемника в переходном режиме
В последние годы в связи с дальнейшим возрастанием скоростей движения электроподвижного состава актуальное значение приобретает динамическое исследование токоприемника для определения влияния отдельных параметров его на качество токосъема и оптимизации их. Одним из решений проблемы токосъма при высоких скоростях движения является применение двухступенчатого авторегулируемого токоприемника.
Данная статья посвящена динамическому исследованию авторегулируемых токоприемников в переходном режиме, т. е. когда одновременно срабатывают верхняя и нижняя ступени, и авторегулируемый токоприемник можно рассматривать как механизм с пятью степенями подвижности. Обобщенными координатами такого механизма будут горизонтальное х0 и вертикальное у0 перемещения основания токоприемника, угловое перемещение нижней системы j, абсолютное вертикальное перемещение верхнего шарнира В верхней системы уВ и абсолютное вертикальное перемещение подрессоренного полоза уд .
Для динамического исследования переходного режима воспользуемся уравнением Лагранжа второго рода.
( 1.19)
где Т -кинетическая энергия токоприемника; П -потенциальная энергия упругих элементов;qі — обобщенная координата; Qi -отнесенная к обобщенной координате сила или момент.
Требуется определить приведенные к обобщенной координате силы и моменты. Для этого составим уравнение суммарной мощности всех действующих на токоприемник сил и моментов.
Воздействие кузова на основание токоприемника заменяем силой реакции R0 ,составляющие которой . Сучетом этого суммарная мощность N
( 1.20)
где РN — контактное нажатие; аэродинамическая подъемная сила полоза;
приведенная к точке В аэродинамическая подъемная сила верхней ступени;
приведенная к точке В сила трения верхней ступени; ТВ — сила натяжения подъемных пружин верхней системы;
tЦ — сила возвратной пружины пневмоцилиндра; РЦ — сила давления воздуха на поршень пневмоцилиндра; fЦ — сила трения в пневмоцилиндре; Мтр.н — момент от сил трения на главных осях нижней ступени; Маэ.н — момент на оси нижней ступени от аэродинамического воздействия встречного воздушного потока; Gп — масса полоза; Gl , G2 , G3 , G4 , — масса звеньев; вертикальные скорости в точках соответственно А, В, Д, S., S2 , S3 , S4 ; a — угол между стержнем AM и горизонталью; Q— угол между стержнем AM и рычагом подъемной пружины верхней системы.
Следует отметить, что в уравнении (2) знаки перед силами трения и fЦ , а также моментом трения Мтр . н должны выбираться такими, чтобы мощности всегда были отрицательными, так как для их преодоления требуются дополнительные затраты энергии. Так, при движении верхней системы вниз (
в отрицательна), при движении поршня пневмоцилиндра справа налево (
-отрицательна), а нижней системы по часовой стрелке (jотрицательна) они берутся со знаком плюс, при противоположных направлениях движения — со знаком минус. При движении электроподвижного состава в указанном на рис.13 направлении (влево) Маэ . н нужно брать со знаком минус, в противоположном направлении — со знаком плюс.
Параметры пружины (ее жесткость с, длина рычага r и угол Q между рычагами пружин и нижних рам) подбираются так, что момент от сил натяжения ТВ относительно главных осей верхней ступени при любой рабочей высоте уравновешивает момент относительно этих же осей от сил массы звеньев и полоза, а также некоторой оптимальной силы статического нажатияРсm , приложенной в точке В.На основании этого из построенного повернутого плана скоростей верхней ступени ( рис. 14 ) с применением теоремы Жуковского сумма всех моментов относительно точки Р равна
Умножив обе части этого уравнения на масштаб плана скоростей и приняв во внимание, что
получим
Если в этом выражении все скорости выразить через обобщенные скорости, то после соответствующих математических преобразований
где Rц - длина рычага, к которому присоединен шатун от пневмоцилиндра; — угол между стержнем нижней подвижной системы и рычагом, к которому присоединен шатун от пневмоцилиндра; d —угол между штоком пневмоцилиндра и шатуном; l- отношение расстояния между шарниром О и центром масс S1 стержня нижней ступени к полной длине этого стержня l1 .
В этом выражении коэффициент перед обобщенными скоростями представляет собой силы, приведенные к соответствующим обобщенным координатам, входящим в уравнение Лагранжа второго рода, т. е.:
где GB .С — полная масса верхней ступени с подвижным основанием
GB . C =GП +2G4 +2G3 +G2