Реферат: Разработка САПР трубчатых реакторов для производства малеинового ангидрида
5.3.1. Общесистемное программное обеспечение.........
5.3.2. Прикладное программное обеспечение............
5.4 Информационное обеспечение.......................
5.5 Лингвистическое обеспечение......................
6. Охрана труда .....................................
6.1 Общие санитарно-гигиенические требования к
устройству ВЦ ...................................
6.2 Неблагоприятные факторы и средства защиты от них.
6.3 Анализ потенциальной опасности на проектируемом
объекте..........................................
6.4 Общие требования безопасности к оборудованию ВЦ..
6.4.1 Ограждения, блокировочные и
предохранительные устройства...................
6.4.2 Разводка информационных и силовых сетей........
6.5 Классификация объекта по взрывной, взрывопожарной
и пожарной опасности.............................
6.6 Электробезопасность..............................
6.6.1 Характеристика используемой электроэнергии.....
6.6.2 Классификация помещения по опасности
поражения электрическим током..................
6.6.3 Меры электробезопасности, используемые в
проекте........................................
6.6.4 Расчет заземляющего контура....................
6.7 Производственное освещение.......................
6.7.1 Расчёт естественного освещения.................
6.7.2 Расчет искусственного освещения................
6.8 Кондиционирование................................
6.9 Средства пожаротушения...........................
7. Технико-экономическое обоснование проекта.........
Заключение...........................................
Список используемых источников.......................
Приложение А – Текст программы.......................
Приложение Б – Схема САПР функциональная.............
Приложение В - Схема САПР структурная................
Приложение Г – Результат оптимизации.................
ВВЕДЕНИЕ
Малеиновый ангидрид был впервые получен в 1919 году Вейссом и Даунсом (фирма «Баррет») парофазным окислением бензола над пятиокисью ванадия.
Малеиновый ангидрид обладает большой реакционной способностью и поэтому используется в производстве полимеров, фармацевтических препаратах, присадок, сельскохозяйственных химикатов и т.д.
Наибольшая доля его потребления приходится на производство пластмасс. Спрос на полиэфирные смолы обуславливает в основном развитие производства малеинового ангидрида. Полиэфирные пластмассы находят применение в ряде отраслей промышленности.
Следующим по важности потребителем малеинового ангидрида является производство алкидных смол. Применение малеинового ангидрида позволяет создавать поверхностные алкидные покрытия с повышенной ударной вязкостью, а также удлиняет срок их службы.
Малеиновый ангидрид применяется для синтеза ряда химических препаратов для сельского хозяйства, таких как гидразит малеиновой кислоты – регулятор роста клубней картофеля, дефолиант – эндоталл, применяемый для ускорения опадания листа и коробочки хлопка и др.
Малеиновый ангидрид также является сырьем для производства фумаровой и яблочной кислот, заменяющих в пищевой промышленности дорогостоящую лимонную кислоту, используемую в кондитерских изделиях и при производстве соков и напитков.
Химические продукты на основе малеинового ангидрида применяются для обработки бумаги, они служат заменителем натуральной канифоли. На основе малеинового ангидрида вырабатываются присадки и стабилизаторы для топлив.
Изо всего выше сказанного можно отметить, что малеиновый ангидрид имеет важное народнохозяйственное значение.
1.АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ
Для разработки производства малеинового ангидрида каталитическим окислением бензола целесообразно использовать методы математического моделирования. Математическая модель процесса позволяет определить оптимальные конструктивные и режимные параметры и разработать высокоэффективный промышленный реактор.
Основным промышленным методом получения малеинового ангидрида является парофазное каталитическое окисление бензола /1,2/. Наиболее распространенным видом сырья для производства малеинового ангидрида является бензол. Мировое производство малеинового ангидрида в 1998-1999 гг. составляло 5,5 млн. т.
Более 90% его получают, используя в качестве сырья бензол. При окислении безвоздушной смеси над ванадиевыми катализаторами выход малеинового ангидрида составляет 70% на пропущенный бензол при полной его конверсии. Около 30% бензола превращается в продукты глубокого окисления СО, СО2 .
Окисление проводят в паровой фазе на стационарном слое катализатора. В зависимости от используемого катализатора изменяется температура реакции в диапазоне 350-450 0 С. Процесс ведут практически без давления, оно составляет 0,5атм и обуславливается сопротивлением технологических аппаратов.
Эффективность процесса получения малеинового ангидрида парофазным окислением бензола зависит от селективности применяемых для этого катализаторов и от степени совершенства самого процесса – как стадии окисления, так и стадий выделения целевого продукта.
В современных промышленных процессах получения малеинового ангидрида парофазным окислением бензола выход малеинового ангидрида на стадии окисления составляет 72-74% при конверсии 98-100%
Получение кислородосодержащих соединений прямым окислением углеводородов кислородом – многостадийный процесс /3/. Образующиеся кислородосодержащие соединения (альдегиды, кислоты, окиси, ангидриды) являются в свою очередь промежуточными продуктами окисления, которые доокисляются затем в СО, СО2 и Н2 О.
Выбор соответствующего катализатора и условий проведения реакции приводит к образованию продуктов неполного окисления. Высокая селективность реакции получается при благоприятном соотношении скоростей образования и дальнейшего превращения промежуточных продуктов.
Реакторы для парофазного каталитического окисления бензола.
Окисление проводят в аппаратах, называемых реакторами. Известно несколько типов реакторов, отличающихся друг от друга конструктивными особенностями и главным образом типом используемого катализатора. Применяемые реакторы можно разделить на две основные группы: со стационарным и псевдоожиженным слоем катализатора.