Реферат: Развитие периодического закона. Зависимость свойства элементов от ядра его атома

Итак, заряд атомного ядра является той основной величиной, от которой зависят свойства элемента и его положение в периодической системе. Поэтому периодический закон Менделеева в настоящее время можно сформулировать следующим образом.

Зависимость свойств элементов и свойств образуемых им веществ от заряда ядра

Определение порядковых номеров элементов по зарядам ядер их атомов позволило установить общее число мест в периодической системе между водородом (имеющим порядковый номер в таблице – 1), и ураном (порядковый номер, которого - 92), считавшимся в то время последним членом периодической системы элементов. Когда создавалась теория строения атома, оставались незанятыми места 43, 61, 72, 75, 85 и 87, что указывало на возможность существования еще неоткрытых элементов. И действительно, уже в 1922 году был открыт элемент гафний, который занял место 72, а затем в 1925 году — рений, занявший место 75. Элементы, которые должны занять остальные четыре свободных места таблицы, оказались радиоактивными и в природе не найдены, однако их удалось получить искусственным путем. Новые элементы получили названия технеций (порядковый номер 43), прометий (61), астат (85) и франций (87). В настоящее время все клетки периодической системы между водородом и ураном заполнены. Однако сама периодическая система не является завершенной, о чем свидетельствует открытие трансурановых (или же заурановых) элементов.


Атомные спектры

Развитая Резерфордом ядерная модель была крупным шагом в познании строения атома. Основные черты этой модели — наличие в атоме положительно заряженного тяжелого ядра, окруженного электронами — выдержали испытание временем и подтверждены большим числом экспериментов. Однако модель Резерфорда в некоторых отношениях противоречила твердо установленным фактам. Стоит отметить два таких противоречия:

· Во-первых, теория Резерфорда не могла объяснить устойчивости атома. Ведь электрон, вращающийся вокруг положительно заряженного ядра, должен, подобно колеблющемуся электрическому заряду, испускать электромагнитную энергию в виде световых волн. Но, излучая свет, электрон теряет часть своей энергии, что приводит к нарушению равновесия между центробежной силой, связанной с вращением электрона, и силой электростатического притяжения электрона к ядру. Для восстановления равновесия электрон должен переместиться ближе к -ядру. Таким образом, электрон, непрерывно излучая электромагнитную энергию и двигаясь по спирали, будет приближаться к ядру. Исчерпав всю свою энергию, он должен «упасть» на ядро, — и атом прекратит свое существование. Этот вывод противоречит реальным свойствам атомов, которые представляют собой устойчивые образования и могут существовать, не разрушаясь, чрезвычайно долго.

· Во-вторых, модель Резерфорда приводила к неправильным выводам о характере атомных спектров. Напомним, что при пропускании через стеклянную или кварцевую призму света, испускаемого раскаленным твердым или жидким телом, на экране, постав ленном за призмой, наблюдается так называемый сплошной спектр, видимая часть которого представляет собой цветную полосу, содержащую все цвета радуги. Это явление объясняется тем, что излучение раскаленного твердого или жидкого тела со стоит из электромагнитных волн всевозможных частот. Волны различной частоты неодинаково преломляются призмой и попадают на разные места экрана.

Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенной длины волны. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия дают спектр, состоящий из трех линий, среди которых две красные и одна фиолетовая, а в спектре паров кальция несколько красных, желтых и зеленых линий и т. д. Такие спектры называются линейчатым и. Тот факт, что атомы каждого элемента дают вполне определенный, присущий только этому элементу спектр, причем интенсивность соответствующих спектральных линий тем выше, чем больше содержание элемента во взятой пробе, широко применяется для определения качественного и количественного состава веществ и материалов. Этот метод исследования называется спектральным анализом.

О чем уже упоминалось выше, электрон, вращающийся вокруг ядра, должен приближаться к ядру, непрерывно меняя скорость своего движения. Частота испускаемого им света определяется частотой его вращения и, следовательно, должна непрерывно меняться. Это означает, что спектр излучения атома должен быть непрерывным, сплошным, а это не соответствует действительности. Таким образом, теория Резерфорда не смогла объяснить ни существования устойчивых атомов, ни наличия у них линейчатых спектров.

Квантовая теория света

Существенный шаг в развитии представлений о строении атома сделал в 1913 году Нильс Бор, предложивший теорию, объединяющую ядерную модель атома с квантовой теорией света.

В 1900 году Планк показал, что способность нагретого тела к лучеиспусканию можно правильно количественно описать, только предположив, что лучистая энергия испускается и поглощается телами не непрерывно, а дискретно, т.е. отдельными порциями — квантами. При этом энергия каждой такой порции, связана, с частотой излучения и соотношением, получившим название уравнения Планка:R=hv

Здесь коэффициент пропорциональности h, так называемая постоянная Планка, — универсальная константа, равная 6,626 • Ю-34 Дж- с.

Сам Планк долгое время полагал, что испускание и поглощение света квантами есть свойство излучающих тел, а не самого излучения, которое способно иметь любую энергию и поэтому могло бы поглощаться непрерывно. Однако в 1905 году А. Эйнштейн, анализируя явление фотоэлектрического эффекта, пришел к выводу, что электромагнитная (лучистая) энергия существует только в форме квантов и что, следовательно, излучение представляет собой поток неделимых материальных «частиц» (фотонов), энергия которых определяется уравнением Планка.

Фотоэлектрический эффект

Фотоэлектрическим эффектом называется испускание металлом электронов под действием падающего на него света. Это явление было подробно изучено в 1888—1890 годах. А. Г. Столетовым (крупный русский физик, профессор Московского университета. Осуществил исследование магнитных свойств железа, имевшее большое теоретическое и практическое значение. Установил основные законы фотоэлектрического эффекта, показал возможность непосредственного превращения световой энергии в электрическую). Если поместить установку в вакуум и подать на пластинку отрицательный потенциал, то тока в цепи наблюдаться не будет, поскольку в пространстве между пластинкой и сеткой нет заряженных частиц, способных переносить электрический ток. Но при освещении пластинки источником света гальванометр обнаруживает возникновение тока (называемого фототоком), носителями которого служат электроны, вырываемые светом из металла.

Оказалось, что при изменении интенсивности освещения изменяется только числа испускаемых; металлом электронов, т. е.. сила, фототека. Но максимальная кинетическая энергия каждого вылетевшего из металла электрона не зависит от интенсивности освещения, а изменяется только при изменении частоты падающего на металл света. Именно с увеличением длины волны (т. е. с уменьшением частоты) энергия испускаемых металлом электронов уменьшается, а затем,, ара определенной; для каждого металла длине волны, фотоэффект исчезает и не проявляется даже при очень высокой интенсивности освещения. Так, при освещении красным или оранжевым светом натрий не проявляет фотоэффекта и начинает испускать электроны только при длине волны, меньшей 590 нм (желтый свет), у лития фотоэффект обнаруживается при еще меньших длинах волн, начиная с 516 нм (зеленый свет), а вырывание электронов из платины под действием видимого света вообще не происходит и начинается только при облучении платины ультрафиолетовыми лучами.

Эти свойства фотоэлектрического эффекта совершенно необъяснимы с позиций классической волновой теории света, согласно которой эффект должен определяться (для данного металла) только количеством энергии, поглощаемой поверхностью металла в единицу времени, но не должен зависеть от типа излучения, падающего на металл. Однако эти же свойства получают простое и убедительное объяснение, если считать, что излучение состоит из отдельных порций, фотонов, обладающих вполне определенной энергией.

В самом деле, электрон в металле связан с атомами металла, так что для его вырывания необходима затрата определенной энергии. Если фотон обладает нужным запасом энергии (а энергия фотона определяется частотой излучения!), то электрон будет вырван, фотоэффект будет наблюдаться. В процессе взаимодействия с металлом фотон полностью отдает свою энергию электрону, ибо дробиться на части фотон не может. Энергия фотона будет частично израсходована на разрыв связи электрона с металлом, частично на сообщение электрону кинетической энергии движения. Поэтому максимальная кинетическая энергия выбитого из металла электрона не может быть больше разности между энергией фотона и энергией связи электрона с атомами металла. Следовательно, при увеличении числа фотонов, падающих на поверхность металла в единицу времени (т. е. при повышении интенсивности освещения), будет увеличиваться только число вырываемых из металла электронов, что приведет к возрастанию фототока, но энергия каждого электрона возрастать не будет. Если же энергия фотона меньше минимальной энергии, необходимой для вырывания электрона, фотоэффект не будет наблюдаться при любом числе падающих на металл фотонов, т. е. при любой интенсивности освещения.

Квантовая теория света, развитая Эйнштейном, смогла объяснить не только свойства фотоэлектрического эффекта, но и закономерности химического действия света, температурную зависимость теплоемкости твердых тел и ряд других явлений. Она оказалась чрезвычайно полезной и в развитии представлений о строении атомов и молекул.

Из квантовой теории света следует, что фотон неспособен дробиться: он взаимодействует как целое с электроном металла, выбивая его из целое он взаимодействует и со светочувствительным веществом фотографической пленки, вызывая ее потемнение в определенной точке, и т. д. В этом смысле фотон ведет себя подобно частице, т. е. проявляет корпускулярное свойств. Однако фотон обладает и волновыми свойствами: это проявляется в волновом характере распространения света, в способности фотона к интерференции и дифракции. Фотон отличается от частицы в классическом понимании этого термина тем, что его точное положение в пространстве, как и точное положение любой волны, не может быть указано. Но он отличается и от «классической» волны — неспособностью делиться на части. Объединяя в себе корпускулярные и волновые свойства, фотон не является, строго говоря, ни частицей, ни волной — ему присуща корпускулярно-волновая двойственность.

Электронная оболочка атома

Строение электронной оболочки атома по Бору. Как уже указывалось, в своей теории Нильс Бор исходил из ядерной модели атома. Основываясь на положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомных спектров, он сделал вывод, что энергия электронов в атоме не может меняться непрерывно, а изменяется скачками, т. е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные, «разрешенные» состояния. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое совершается скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения.

Основные положения своей теории. Бор сформулировал в виде постулатов (постулат — утверждение, принимаемое без доказательства), содержание которых сводится к следующему:

· Электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным круговым орбитам. Эти орбиты получили название стационарных.

· Двигаясь по стационарной орбите, электрон не излучает, электромагнитной энергии.

· Излучение происходит при скачкообразном переходе электрона с одной стационарной орбиты на другую. При этом испускается или поглощается квант электромагнитного излучения, энергия которого равна разности энергии атома в конечном и исходном состояниях.

Последнее утверждение требует некоторых пояснений, поскольку энергия электрона, вращающегося вокруг ядра, зависит от радиуса орбиты. Наименьшей энергией электрон обладает, находясь на ближайшей к ядру орбите (это так называемое нормальное состояние атома). Для того чтобы перевести электрон на более удаленную от ядра орбиту, нужно преодолеть притяжение электрона к положительно заряженному ядру, что требует затраты энергии. Этот процесс осуществляется при поглощении кванта света, Соответственно, энергия атома при таком переходе увеличится, он перейдет в возбужденное состояние. Переход электрона в обратном направлении, т. е. с более удаленной орбиты на более близкую к ядру, приведет к уменьшению энергии атома. Освободившаяся энергия будет выделена в виде кванта электромагнитного излучения. Если обозначить начальную энергию атома при нахождении электрона на более удаленной от ядра орбите через Ек, а конечную энергию атома для более близкой к ядру орбиты через Ек , то энергия кванта, излучаемого при перескоке электрона, выразится разностью:

Е = Еш —Ек .

Принимая во внимание уравнение Планка Е = hv,- получим hv = Ея — Ек , откуда:

v = (£н — -EK )/h

К-во Просмотров: 169
Бесплатно скачать Реферат: Развитие периодического закона. Зависимость свойства элементов от ядра его атома