Реферат: Реализация искусственной нейронной сети
yq (0) =Iq ,
где Iq – q-ая компонента вектора входного образа.
2. Рассчитать d(N) для выходного слоя по формуле:
(3)
Рассчитать изменения весов Dw( N) слоя N по формуле:
(4)
3. Рассчитать для всех остальных слоев, n=N-1,...1
1)d( n) по формуле:
(5)
2) Dw( n) по формуле(15)
4. Скорректировать все веса в НС
(6)
5. Если ошибка сети существенна, перейти на шаг 1. В противном случае конец.
6 Заключение
В ходе настоящей работы была разработана и реализована программно искусственная нейронная сеть. Программа написана в среде Borland Delphi 3. Она представляет собой гибкую систему, в которой задаётся количество скрытых слоёв и количество нейронов в каждом из них. Количество входов и выходов одинаково и равно единице. Над программой был проведён длительный эксперимент, который продолжался около 10-ти часов. За это время нейронная сеть, реализованная в ней, обучалась по переднему фронту пика(см. приложение Г). Нейронная сеть состояла из 4-х слоёв по 50 нейронов, и выходного слоя с одним нейроном. Сеть обучилась до уровня ошибки – 0,0016, за число итераций – 95649.
Приложение А
Пример суперпозиции пиков и их истинностных фронтов
Приложение Г
Результаты обучения
Рис. 1. Результат работы программы
Рис. 2. График зависимости ошибки обученияот номера итерации