Реферат: Решения смешанной задачи для уравнения гиперболического типа методом сеток

Для вычисления решения на первом слое (j=1) в данной лабораторной работе принят простейший способ, состоящий в том, что если положить ¶u(x,0)/ ¶ t » ( u( x, t ) - u(x,0) )/ t (6) , то ui1=ui0+ + t (xi), i=1,2, ... n. Теперь для вычисления решений на следующих слоях можно применять формулу (5). Решение на каждом следующем слое получается пересчетом решений с двух предыдущих слоев по формуле (5).

Описанная выше схема аппроксимирует задачу с точностью до О( t +h2). Невысокий порядок аппроксимации по t объясняется использованием слишком грубой аппроксимации для производной по е в формуле (6).

Схема устойчива, если выполнено условие Куранта t < h. Это означает, что малые погрешности, возникающие, например, при вычислении решения на первом слое, не будут неограниченно возрастать при переходе к каждому новому временному слою. При выполнении условий Куранта схема обладает равномерной сходимостью, т.е. при h ® 0 решение разностной задачи равномерно стремится к регшению исходной смешанной задачи.

Недостаток схемы в том, что как только выбраная величина шага сетки h в направлении x , появляется ограничение на величину шага t по переменной t . Если необходимо произвести вычисление для большого значения величины T , то может потребоваться большое количество шагов по переменной t. Указанный гнедостаток характерен для всех явных разностных схем.

Для оценки погрешности решения обычно прибегают к методам сгущения сетки.

Для решения смешанной задачи для волнового уравнения по явной разностной схеме (5) предназначена часть программы, обозначенная Subroutine GIP3 Begn ... End . Данная подпрограмма вычисляет решение на каждом слое по значениям решения с двух предыдущих слоев.

Входные параметры :

hx - шаг сетки h по переменной х;

ht - шаг сетки t по переменной t;

k - количество узлов сетки по x, a = hn;

u1 - массив из k действительных чисел, содержащий значение решений на ( j - 1 ) временном слое, j = 1, 2, ... ;

u2 - массив из n действительных чисел, содержащий значение решений на j - м временном слое, j = 1, 2, ... ;

u3 - рабочий массив из k действительных чисел.

Выходные параметры :

u1 - массив из n действительных чисел, содержащий значение решения из j - м временном слое, j = 1, 2, ... ;

u2 - массив из n действительных чисел, содержащий значение решения из ( j +1) - м временном слое, j = 1, 2, ... .

К части программы, обозначенной как Subroutine GIP3 Begin ... End происходит циклическое обращение, пеоред первым обращением к программе элементам массива u2 присваиваются начальные значения, а элементам массива u1 - значения на решения на первом слое, вычислинные по формулам (6). При выходе из подпрограммы GIP3 в массиве u2 находится значение решения на новом временном слое, а в массиве u1 - значение решения на предыдущем слое.

Порядок работы программы:

1) описание массивов u1, u2, u3;

2) присвоение фактических значений параметрам n, hx, ht, облюдая условие Куранта;

3) присвоение начального значения решения элементам массива и вычисленное по формулам (6) значение решения на первом слое;

4) обращение к GIP3 в цикле k-1 раз, если требуется найти решение на k-м слое ( k і 2 ).

Пример:

1

0.5 0.5

Решить задачу о колебании струны единичной длины с закрепленными концами, начальное положение которой изображено на рисунке. Начальные скорости равны нулю. Вычисления выполнить с шагом h по x, равным 0.1, с шагом t по t, равным 0.05, провести вычисления для 16 временных слоев с печатью результатов на каждом слое. Таким образом, задача имеет вид

( ¶ 2 u/ ¶ t2) = ( ¶ 2 u/ ¶ x 2) , x О [ 0 , 1 ] , t О [ 0 , T ] ,

u ( x , 0 ) = f (x) , x О [ 0 , a ], ¶ u(x,0)/ ¶ t = g(x) , x О [ 0 , a ],

К-во Просмотров: 245
Бесплатно скачать Реферат: Решения смешанной задачи для уравнения гиперболического типа методом сеток