Реферат: Робототехника в медицине
По мнению исполнительного директора создавшей машину компании InTouch Health Юлина Ванга, применение роботов при уходе за престарелыми людьми может снять остроту проблемы старения нации. В условиях, когда уже к 2010 году число пенсионеров в стране возрастет до 40, а к 2030 — до 70 миллионов, это очень важно. Пока же фирма собирается сдавать своих роботов в аренду домам престарелых. В будущем компания планирует создание роботов, которые смогут приводить в движение инвалидную коляску.
Настоящий шаг в будущее сделали инженеры из Массачусетского технологического института, заменившие врача-физиотерапевта роботом. Как известно, люди, перенесшие инсульт, надолго забывают о своей привычной жизни. В течение многих месяцев и даже лет они вновь учатся ходить, держать ложку в руках, совершать те обыденные действия, о которых раньше даже не задумывались. Теперь им могут помочь не только врачи, но и роботы.
Речь идет о сеансах физиотерапии, необходимых для восстановления координации движений рук. Сейчас пациенты обычно занимаются с врачами, которые показывают им соответствующие упражнения. В отделения реабилитации Бостонского городского госпиталя, где проводятся испытания новой установки, выздоравливающему от инсульта предлагается с помощью джойстика перемещать на экране по заданной траектории небольшой курсор. Если же человек не может этого сделать, управляемый компьютером джойстик с помощью встроенных электромоторов сам переместит его руку в необходимое положение.
Врачи остались довольны работой новинки. В отличие от человека, робот может совершать одни и те же движения тысячи раз в день и при этом не уставать. Что касается самих врачей, то им не стоит бояться безработицы: просто вместо того, чтобы часами сидеть с больными, они смогут разрабатывать новые, более эффективные программы тренировок.
Так как медицина является довольно обширной областью науки, не обошлось здесь и без вмешательства современных нанотехнологий. Вот что можно отметить в этом разделе.
Беспорядочно мельтешащие под микроскопомбактериивнезапно замирают на месте. Затем, будто сговорившись, начинают выстраиваться в ровную линию. Микробы за считаные секунды занимают свои места в колонне, и тут в движение приходит весь строй -бактериикак по команде синхронно поворачиваются налево.
Движениями микробов действительно управляют. Этим занимается сидящий за пультом ученый - профессор Политехнической школы Монреаля Сильван Мартель. Созданная канадским ученым установка контролирует перемещениебактерийс помощью магнитного поля с точностью до тысячных долей миллиметра. Недавно исследователь показал свой прибор в действии. 5000бактерийсогласованно передвигали в капле воды микроскопические полимерные блоки и сложили из них миниатюрное строение.
Это только начало испытаний. В ближайшем будущем такую «рабочую силу» можно будет применить с большей пользой - в медицине. Уже много лет в лабораториях по всему миру пытаются создатьМИКРОРОБОТОВ, которые смогли бы выполнять различные операции внутри организма пациентов. Дальше простейшихпрототипову инженеров дело пока не пошло. Теперь ученые получили возможность пойти обходным путем - на смену сложным и неэффективным устройствам приходят микроорганизмы.
Возведенноебактериямистроение можно разглядеть только под микроскопом. Оно напоминает египетскую пирамиду. Сходство не случайно. «Пирамиды - один из первых шагов человека к созданию действительно сложных конструкций, - рассказывает Сильван Мартель. - Мы подумали, что будет символично, если микроорганизмы выполнят именно такое задание». Настоящие пирамиды сооружали многие годы.Бактерииуправились с моделью за 15 минут. Это, несмотря на то, что строительные блоки были куда крупнее самих «рабочих».
Микроорганизмы работали сообща. Под микроскопом 5000бактерийвыглядели как сплошное темное облако. Вот этот рой нависает над одним из «кирпичей». В следующую секунду микробы начинают медленно, но верно толкать блок на заданное в чертеже место. «Мы пока только обкатываемтехнологию, - говорит Мартель. - В принципе, все то же самое можно делать значительно быстрее».
Секрет успеха - в выдающихся способностях этих микроорганизмов. Канадские ученые используют в работебактерииMagnetospirillum magnetotacticum. «Оказалось, это настоящие рекордсмены, - объясняет Мартель. - Они движутся на порядок быстрее другихбактерий». Кроме того, эти микроорганизмы чувствительны к магнитным полям - они в больших количествах накапливают в себе соединения железа. Ученые пока не очень хорошо понимают, зачем это нужно самим микробам. Зато теперь понятно, как такую особенность может использовать человек. С помощью магнитного поля Мартель заставляетбактерииразворачиваться в нужную сторону. Дальше они двигаются самостоятельно - у них есть специальные жгутики, работающие, как гребные винты кораблей.
Они могут перемещаться не только в капле воды под микроскопом. Канадский ученый ввелбактериив кровь лабораторных крыс и с помощью магнитного поля заставил микробов маневрировать в сосудах. Оказалось, бактерии способны двигаться даже против течения. Правда, преодолевать поток им удавалось только в небольших капиллярах, где кровь циркулировала медленно. В крупных артериях «пловцов» безнадежно сносило - скорость жидкости там достигала нескольких десятков сантиметров в секунду. Размножаться в крови эти микробы не способны, поэтому на здоровье грызунов их присутствие не повлияло. Микроорганизмы некоторое время двигались по сосудам, а затем погибли.
Эффективности бактериальных двигателей позавидует любой инженер. «Главная проблема, о которую разбиваются попытки создать медицинскихМИКРОРОБОТОВ, - их габариты, - рассуждает Владимир Лобаскин, физик из Университетского колледжа Дублина. - Требования к размеру этих устройств таковы, что для них очень непросто создать достаточно мощный мотор». Сам Лобаскин занимается теоретическими расчетами эффективности как раз таких вот микроскопических двигателей. «Технические характеристики»бактерийМартеля произвели на физика большое впечатление: «Это практически готовая система для решения медицинских задач».
Похоже, разработчикам настоящихМИКРОРОБОТОВна это действительно нечем ответить. Один из самых последнихпрототиповбыл создан несколько лет назад в швейцарском Институтеробототехникии интеллектуальных систем. Он представляет собой крошечную металлическую спираль, которую можно разглядеть только под очень мощным микроскопом. Попав в переменное магнитное поле, она начинает вращаться и работать, как пропеллер. Направлением движения этого устройства тоже можно управлять с помощью магнитов.
Со временем разработчики рассчитывают использовать его для доставки лекарств в различные ткани человеческого организма. Пока получается не очень хорошо. Эти изделия примерно в десять раз медленнее «живыхроботов», с которыми работают в Канаде. О маневрах в кровеносных сосудах говорить даже не приходится. В этом нет ничего удивительного, уверен Мартель. За миллионы лет эволюция хорошо поработала надбактериями. Быстро создать такое же совершенное искусственное устройство будет очень непросто.
Именно поэтомубиотехнологииз корейского Национального университета Чуннам попробовали совместить в своей работе два противоположных подхода. Созданный имипрототипмедицинскогоМИКРОРОБОТАпостроен из синтетического полимера и клеток сердечной мышцы человека - кардиомиоцитов. Клетки натянуты на гибкий пластиковый каркас на специальных ножках. Сокращаясь, клетки приводят в движение всю конструкцию, и устройство начинает перебирать ногами. Разработчики предполагают, что в будущем подобныероботысмогут путешествовать по кровеносным сосудам человека, цепляясь за стенки. Функционировать такие изделия смогут очень долго - «клеточный двигатель» использует в качестве топлива растворенную в крови глюкозу.
«Всего несколько лет назад разговоры ороботах, доставляющих лекарства в определенные точки организма, казались фантазиями, - говорит Алексей Снежко, физик из Аргоннской национальной лаборатории (США). - Теперь понятно, что в самое ближайшее время их начнут испытывать на людях».
Как это будет выглядеть, понятно уже сейчас. В одном из последних опытов Сильван Мартель и его коллеги ввелибактериив организм больной раком крысы. А затем поместили ее в медицинский томограф. Эти приборы используют сильные магнитные поля для построения трехмерных карт организма пациента. После небольшой переделки установка превратилась в командный пункт для микробов. С ее помощью ученые провелибактериипо кровеносной системе грызуна прямо в район опухоли. Микроорганизмы доставили к пораженной области учебный груз - флуоресцирующее вещество. Вскоре Мартель планирует повторить эксперимент. На этот раз бактерии будут нести противоопухолевый препарат.
Так же нанотехнологи продемонстрировали довольно впечатляющие образцы электронной кожи. Электронная кожа впервые ощутила прикосновения бабочки
Решётка из тончайших полупроводниковых нитей, совмещённая с электродами и меняющей в ответна давление проводимость резиной типа PSR (вверху) превращена калифорнийскимиумельцами в "лоскут кожи" (внизу)(иллюстрации Kuniharu Takei et al./Nature Materials).
На этом рисунке кожи робота каждый чёрный квадратик соответствует одному "пикселю", элементарной точке, отвечающей за осязание (иллюстрация Ali Javey and Kuniharu Takei, UC Berkeley).Чувствительность кожи авторы рекламируют красочной фантазией: робот с такимманипулятором смог бы запросто обращаться с куриным яйцом, не уронив его и не раздавив (иллюстрация Ali Javey, Kuniharu Takei/UC Berkeley).
Ещё одна иллюстрация чувствительности стэнфордского сенсора: он регистрирует прикосновения перуанской бабочкиChorinea faunus(фото L.A. Cicero/Stanford University).
Уже немало копий сломано вокруг проблемы создания робототехнического аналога самого крупного органа человека. Главный вопрос – как воспроизвести невероятную чувствительность кожного покрова, который может ощутить дуновение ветерка от пролетевшего насекомого? Недавно две исследовательские группы из Калифорнии одновременно объявили о своих впечатляющих ответах.
Первая команда, из Калифорнийского университета в Беркли, выбрала в качестве ключевого элемента для своей искусственной кожи нанопроводки. Как сообщают учёные впресс-релизе, они вырастили крошечные германиевые и кремниевые нити на специальном барабане, а затем прокатили этим валиком по подложке – клейкойполиимиднойплёнке.
В итоге учёные получили эластичный материал, в структуру которого были включены нанопроводки, играющие роль транзисторов.
Поверх них исследователи нанесли изолирующий слой с периодическим рисунком из тонких отверстий, а ещё выше – чувствительную к прикосновению резину (PSR).Между резиной и нанопроводками при помощи фотолитографии навели проводящие мостики (для этого и понадобились отверстия в слое изолятора) и, наконец, сдобрили бутерброд тонкой алюминиевой плёнкой – финальным электродом. (Подробности авторы системы представили встатьев Nature Materials).Такой эластичный набор способен определять и точно локализовать участки, к которым прикладывается давление.Имя эта кожа получила банальное и предсказуемое — e-skin. Новая технология позволяет использовать в качестве подложки множество материалов, от пластика до резины, а также включать в её состав молекулы различных веществ, например, антибиотиков (что может оказаться весьма важным).На опытном куске e-skin размером 7 х 7 сантиметров уместилась матрица 19 х 18 пикселей. В каждом из которых содержались сотни наноштырей. Такая система оказалась способна регистрировать давление от 0 до 15 килопаскалей.Примерно такие уровни нагрузки испытывает человеческая кожа при печатании на клавиатуре или удерживании на весу небольшого объекта.