Реферат: Синтез частотно-избирательного фильтра

5. Определить координаты нулей и полюсов передаточной функции синтезируемого частотно-избирательного фильтра. Построить график АЧХ с использованием денормированной частоты .

6. Определить лестничную структуру синтезируемого фильтра с нормированными элементами и провести денормирование элементов.

7. Выбрать возможные варианты RLC-звеньев первого и второго порядков, предназначенных для каскадной реализации фильтра, рассчитать величины элементов и составить полную схему фильтра.

8. Уменьшив частотные параметры на два порядка:

8.a. Составить схему и провести расчет элементов для гираторной реализации фильтра.

8.b. Выбрать возможные варианты ARC-звеньев первого и второго порядков, предназначенные для безиндукционной каскадной реализации фильтра, рассчитать величины элементов и составить полную схему фильтра.

9. Сделать вывод, дав сравнительную характеристику различным вариантам реализации синтезируемого фильтра.

Исходные данные

Задача синтеза фильтра состоит в разработке электрической схемы устройства, обладающего требуемыми частотными и временными характеристиками. Курсовая работа предполагает проектирование фильтра на основе требования к форме его характеристики затухания. При синтезе полосно-пропускающего фильтра вводится требование к верхним и нижним граничным частотам полосы пропускания (, , , ).

Амплитудно-частотная характеристика (АЧХ) фильтра и характеристика затухания связаны друг с другом выражением

,

поэтому при рассмотрении требований к АЧХ необходимо вместо допусков и ввести параметры: - допустимую неравномерность в полосе пропускания и - максимально допустимую передачу в полосе задержания, причем

, .

Типичная АЧХ полосно-пропускного фильтра Чебышева приведена на рисунке.

Процедура проектирования частотно-избирательного фильтра включает в себя два основных этапа:

1. Этап проектирования , в ходе которого подбирается передаточная функция, удовлетворяющая заданным требованиям (АЧХ, выделенная из аппроксимирующей передаточной функции, не должна выходить за пределы заданного коридора допусков);

2. Этап реализации , суть которого – в выборе принципа реализации передаточной функции, разработке и расчете конкретной схемы фильтра, обладающего найденной передаточной функцией.

Порядок выполнения первого этапа достаточно хорошо разработан, поставленная задача решается с использованием какого-либо из многочисленных справочников по расчету фильтров. Решение второй задачи в рамках второго этапа многовариантно. Это связано с тем, что известно довольно много принципов и схем, позволяющих реализовать найденную передаточную функцию.

Аппроксимация частотной характеристики фильтра

Последовательность шагов

На этапе аппроксимации необходимо проделать следующее:

1. Выбрать тип фильтра.

2. Пересчитать исходные данные в требования к фильтру – прототипу нижних частот (ФНЧ-прототипу).

3. Определить минимальный порядок ФНЧ-прототипа, нули и полюсы его передаточной функции (с помощью справочника).

4. Пересчитать нули и полюса ФНЧ-прототипа в нули и полюсы синтезируемого фильтра.

5. Записать передаточную функцию фильтра, найти и построить АЧХ или характеристику затухания.

Тип фильтра

Существует ряд типов фильтров, различающихся по характеру их передаточных функций. Например, фильтр Баттерворта, фильтр Чебышева, эллиптический (Золоторева - Каура) фильтр. Каждый из указанных типов в определенном смысле оптимален. Главная же особенность состоит в том, что заданную избирательность фильтр Чебышева обеспечивает при меньшем порядке, чем фильтр Баттерворта, а эллиптический фильтр в этом смысле лучше чебышевского.

Требования к ФНЧ-прототипу

Для того чтобы не было привязки начального этапа расчета к конкретным значениям частоты и, следовательно, приводимые в справочниках таблицы и графики имели большую общность, осуществляется нормировка частотной оси и ее трансформация таким образом, чтобы свести характеристики ФНЧ, ФВЧ, ППФ, ПЗФ к характеристикам эквивалентного ФНЧ-прототипа.

Амплитудно-частотная характеристика ФНЧ-прототипа определена на нормированной оси частот, причем граничная частота полосы пропускания , а граничная частота полосы задержания . В качестве нормирующей частоты для ФНЧ и ФВЧ выбирается граничная частота полосы пропускания , а для ППФ и ПЗФ – центральная частота полоса пропускания (задержания) . Формулы для вычисления нормированных частот синтезируемого фильтра и его ФНЧ-прототипа приведены в таблице 2.1.[1] Обозначение частоты с тильдой () относится к проектируемому фильтру, а без тильды () – к ФНЧ-прототипу. При синтезе ППФ и ПЗФ определяется коэффициент геометрической асимметрии , в зависимости от значения, которого по-разному вычисляют нормированные частоты. Важно проконтролировать, чтобы всегда выполнялись условия: и . В противном случае невозможно правильное преобразование ППФ и ПЗФ из ФНЧ-прототипа.

К-во Просмотров: 576
Бесплатно скачать Реферат: Синтез частотно-избирательного фильтра