Реферат: Система счисления
Наиболее привычной для нас является десятичная система счисления. Исторически вначале, видимо, использовалась непозиционная единичная система счета - с помощью камней или палочек. Система счета состояла из двух чисел - один и два, а все, что больше двух, обозначалось, как «много».
Затем, благодаря наличию десяти пальцев рук у человека, возникла десятичная система счета. В этой системе используются специальные графические знаки - арабские цифры, которые можно записать в следующем порядке: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Таких знаков десять, и они специально разделены запятыми, чтобы показать, что это отдельные («дискретные») знаки, которые не зависят друг от друга.
Идея позиционной системы счисления выдвигалась еще Архимедом в работе «Исчисление песка».
В разное время и у разных народов использовались системы счисления с различными основаниями:
· в Древнем Вавилоне - шестидесятиричная система (используемая и сейчас при измерении времени);
· в Германии и Великобритании - двенадцатеричная (при измерении количества, в денежных системах), у древних адыгов - двадцатеричная и т. д.;
· неколичественные (качество выступает в роли количества: «много», «мало» и т. д.) способы счета - например, у эскимосов.
Рассмотрим основные системы счисления, помимо десятичной.
В двоичной системе счисления основание равно двум. В этой системе счисления используются всего два знака, две цифры - «0» и «1».
Такая система получила название двоичной системы счисления. Ее еще называют бинарной, от английского слова «binary», что, собственно, и переводится как «двоичный». В таблице 1 представлено соответствие десятичных и двоичных чисел.
Таблица 1. Соответствие десятичных и двоичных чисел
Десятичное число |
Двоичное число |
Десятичное число |
Двоичное число |
0 | 0 | 11 | 1011 |
1 | 1 | 12 | 1100 |
2 | 10 | 13 | 1101 |
3 | 11 | 14 | 1110 |
4 | 100 | 15 | 1111 |
5 | 101 | 16 | 10000 |
6 | 110 | 17 | 10001 |
7 | 111 | 18 | 10010 |
8 | 1000 | 19 | 10011 |
9 | 1001 | 20 | 10100 |
10 | 1010 |
В восьмеричной системе счисления основание – цифры 0,1,2,3,4,5,6,7.
Таблица 2. Соответствие десятичных и восьмеричных чисел
Десятичные числа | Восьмеричные числа | Десятичные числа | Восьмеричные числа |
0-7 | 0-7 | 25-63 | 31-77 |
8 | 10 | 64 | 100 |
9-15 | 11-17 | 128 | 200 |
16 | 20 | 256 | 400 |
17-23 | 21-27 | 512 | 1000 |
24 | 30 | 1024 | 2000 |
Основание шестнадцатеричной системы счисления – цифры 0,1,2,3,4,5,6,7,8,9 и буквы A,B,C,D,E,F.
Соединим десятичные и шестна-дцатеричные числа в единую таблицу (табл. 3).
Таблица 3. Соответствие десятичных и шестнадцатеричных чисел
Десятичное число | Шестнадцатеричное число | Десятичное число | Шестнадцатеричное число |
0-9 | 0-9 | 29 | 1D |
10 | А | 30 | 1Е |
11 12 |
В С |
31 32-41 |
1F 20-29 |
13 | D | 42-47 | 2A-2F |
14 | Е | 48-255 | 30-FF |
15 | F | 256 | 100 |
16 | 10 | 512 | 200 |
17-25 | 11-19 | 1024 | 400 |
26 | 1А | 1280 | 500 |
27 | 1В | 4096 | 1000 |
28 | 1C |
Шестнадцатеричная система используется, чтобы более компактно записывать двоичную информацию. В самом деле, «шестнадцатеричная тысяча», состоящая из четырех разрядов, в двоичном виде занимает тринадцать разрядов (100016 = 10000000000002 ).
2. Перевод чисел из одной системы счисления в другую