Реферат: Системы связи 2

Уравнение (4a) представляет собой сигнал, состоящий из двух колебаний с частотами w1 =wн +wм и w2 =wн -wм и амплитудами Ан Ам /2. Переписывая выражение для модулирован­ного колебания (4a), получим

(4б)

w1 и w2 называются боковыми полосами частот, так как wм обычно является полосой частот, а не одиночной частотой. Следовательно, w1 и w2 представляют собой две полосы частот — выше и ниже не­сущей (рис. 1,б), т. е. верхнюю и нижнюю боковую полосу соответ­ственно. Вся информация, которую необходимо передать, содержит­ся в этих боковых полосах частот.

Уравнение (4б) было получено для особого случая, когда модулированный сигнал был результатом прямого перемножения ен на ем . В результате уравнение (4б) не содержит компонента на частоте несущей, т. е. частота несущей полностью подавлена. Такой тип модуляции с подавленной несущей иногда преднамеренно проек­тируется в системах связи, так как это ведет к снижению излучае­мой мощности. В большинстве таких систем излучается некоторая часть мощности на частоте несущей, позволяя тем самым приемному устройству настраиваться на эту частоту. Можно также передавать лишь одну боковую полосу, так как она содержит всю существенную информацию о модулирующем сигнале. Приемное устройство затем восстанавливает ем по модуляции одной боковой полосы.

Полное выражение, представляющее амплитудно-модулированное колебание в общем виде, имеет вид

ен емн cos(wн t)+ Ам cos(wн t)cos(wм t) (6а)

Это выражение описывает как неподавленную несущую (первый член в правой части уравнения), так и произведение, т. е. модуля­цию (второй член справа). Уравнение (6a) можно переписать в виде

ен ем =[Ан + Ам cos(wм t)]cos(wн t)= Анм cos(wн t) (6б)

Последнее выражение показывает, как амплитуда несущей изме­няется в соответствии с мгновенными значениями модулирующего колебания. Амплитуда модулированного сигнала Анм состоит из двух частей: Ан — амплитуды немодулированной несущей и Ам cos(wм t) мгновенных значений модулирующего колебания:

Анмн + Ам cos(wм t) (7)

Отношение Ам к Ан определяет степень модуляции. Для Амн значение Анм достигает нуля при cos(wм t)=-1 (wм t=180°) и Анм =2Ан при cos(wм t)=1 (wм t= 0°). Амплитуда модулирован­ной волны изменяется от нуля до удвоенного значения амплитуды несущей. Отношение

m= Амн (8)

определяет коэффициент модуляции. Для предотвращения искаже­ний передаваемой информации — модулированного сигнала — значение m должно быть в пределах от нуля до единицы: 0£m£1. Это соответствует Ам £Ан . (Для m=0 Ам = 0, т. е. нет модулирующего сигнала.) Уравнение (6a) может быть переписано с введением m:

ен емн cos(wн t)[1+m×cos(wм t)] (6в)

На рис. 2,а показана форма модулированных колебаний и ко­эффициент модуляции m выражен через максимальное и минималь­ное значения ее амплитуды (пикового и узлового значений). Рис. 2,б дает представление о спектре модулированных колебаний, который может быть выражен преобразованием уравнения (6):

(6г)

несущая верхняя боковая полоса нижняя боковая полоса

На рис. 2,в показан результат модуляции с коэффициентом m, превышающим 100%: m>1.

В таблице на рис. 3 приведены амплитуда и мощьность для каждой из трех частотных компонент модулированного колебания.

Угловая частота

Амплитуда

Относитель­ная амплитуда

Относитель­ная мощность

Несущая

wн

Ан

1

1

Верхняя боковая полоса

wн +wм

Ам /2

m/2

(m/2)2

Нижняя боковая полоса

wн -wм

Ам /2

m/2

(m/2)2

Рнс. 3. Мощность и амплитуда АМ-колебаний.

Для 100%-ной модуляции (m= 1) и мощности несущей 1 кВт полная мощность модулированных колебаний составляет 1 кВт+(1 /2 )2 кВт+(1 /2 )2 кВт=1,5 кВт. Отметим, что при m=1 мощность, заключенная в обеих боковых полосах, составляет поло­вину мощности несущей. Аналогично при m=0,5 мощность в обе­их боковых полосах составляет 1 /8 мощности несущей. Указанное выше имеет место лишь для синусоидальной формы AM. Амплитуд­ная модуляция может быть использована в передаче импульсных значений.

При обычной модуляции с двумя боковыми полосами, использу­емой в радиовещании, информация передается исключительно в бо­ковых полосах. Для того чтобы получить, например, хорошее ка­чество звука, необходимо работать в полосе частот шириной 2М, где М ширина полосы высококачественного воспроизведения звука (20—20 000 Гц). Это означает, что стандартное АМ-радиовещание, к примеру, с частотами до 20 кГц должно иметь ширину полосы ±20 кГц (всего 40 кГц), учитывая верхнюю и нижнюю боковые по­лосы. Однако на практике ширина полосы частот по правилам ФКС ограничивается величиной 10 кГц (±5 кГц), которая предусматри­вает для радиопередачи звука ширину полосы всего лишь 5 кГц, что далеко от условий высококачественного воспроизведения. Радиовещание с частотной модуляцией, как это будет показано ниже, имеет более широкую полосу частот.

Федеральная комиссия связи также устанавливает допуски час­тоты всех распределений частот в США. Все АМ-радиовещание (535—1605 кГц) имеет допустимые отклонения в 20 Гц, или около 0,002 %. Эта точность и стабильность частоты может быть достигнута путем использования кварцевых генераторов.

Детектирование или демодуляция АМ-колебаний требует вы­прямления модулированного сигнала, сопровождаемого исклю­чением несущей частоты с помощью соответствующей фильтрации. Эти две стадии воспроизведения модулирующего сигнала могут быть продемонстрированы па примере колебания, изображенного на рис. 2, а. После выпрямления остается лишь половина колебания, а после фильтрации присутствует лишь его огибающая, которая явля­ется воспроизведенным сигналом.

На рис. 4 приведены функциональные схемы передающей и приемной систем с амплитудной модуляцией.

Рис. 4. АМ-система.

а-функциональная схема передатчика; б-функциональная схема приемника.

Передатчик содержит два источника: сигнала модуляции — от микрофона, проигрывате­ля и т.д. и несущей — от генератора с кварцевой стабилизацией. Модулирующий сигнал и несущая вводятся в модулятор, который вырабатывает модулированный сигнал, который затем передается через антенну. В большинстве передатчиков большой мощности мо­дуляция осуществляется в последнем каскаде системы для того, чтобы избежать необходимости усиливать модулированный сигнал. Усиление несущей и модулирующего сигнала происходит раздельно. Степень модуляции контролируется изменением амплитуды модуля­ции и поддержанием постоянной амплитуды несущей. С тех пор как передаваемая мощность стала лимитироваться ФКС, большинство радиовещательных станций имеет автоматическое управление и контроль мощности, как это показано штриховыми линиями на рис. 4,а.

Приемник (рис. 4,б) содержит высокочастотный усилитель, который усиливает сигнал, принятый антенной. ВЧ-усилитель на­страивается; его частота настройки может быть изменена (в диапазо­не радиовещания для АМ-приемников) для выбора нужной станции. Термин «избирательность», примененный к приемнику, относится к способности приемника выбирать отдельную станцию (частоту), не принимая при этом сигналов от примыкающих к ней станций. Например, если приемник имеет плохую избирательность, то при настройке на станцию WQXP (1560 кГц) может быть также принята другая, смежная станция WWRL (1600 кГц). Ясно, что приемник с такой плохой избирательностью является непригодным. Нужно так­же помнить, что ВЧ-усилитель должен иметь ширину полосы 5 кГц для звуковых сигналов (две боковые полосы требуют ширину поло­сы ±5 кГц вокруг частоты несущей). Таким образом, требуется по­лоса частот 10 кГц совместно с высокой избирательностью, которая означает очень крутые спады частотной характеристики перестраи­ваемого контура, обеспечивающие существенное ослабление сигна­лов вблизи выбранной частоты, но находящихся вне полосы частот ±5 кГц.

Приемник, показанный на рис. 4,б, является приемником или прямого усиления (сплошные линии), или гетеродинного типа (штри­ховые линии). В последнем принятый ВЧ-сигнал wн смешивается с колебаниями от местного генератора-гетеродина wг . В результате возникают два сигнала — с частотами wг -wн и wг +wн . Сиг­нал с разностной частотой wг -wн усиливается усилителем проме­жуточной частоты (УПЧ) и затем подводится к детектору. На рис. 4,б штриховыми линиями вместо сплошных линий между ВЧ-усилителем и детектором представлена функциональная схема гетеро­динного приемника. Такой метод приема позволяет настраиваться на любую станцию, в то время как промежуточная частота остается равной 455 кГц и легко усиливается усилителями с фиксированной частотой настройки. Отметим, что для того, чтобы настроиться на станцию, нужно изменять wг и wн одновременно, и, таким образом, разность wг -wн остается неизменной. Приемник гетеродинного типа имеет лучшую избирательность и гораздо большую чувстви­тельность. Минимально различимый им сигнал составляет 10 мкВ на антенне. Когда мы говорим «различимый», то подразумеваем пре­вышающий уровень шумов приемника.

2.2. ЧАСТОТНАЯ МОДУЛЯЦИЯ, ФАЗОВАЯ МОДУЛЯЦИЯ

В методе частотной модуляции (ЧМ) амплитуда модулирующего сигнала управляет мгновенной частотой несущей. Идеальная ЧМ не вносит изменений в амплитуду несущей. Следовательно, форма напряжения модулированной несущей может быть выражена в виде

ечмн cos[wн t+d×sin(wм t)] (9)

где wн и wм - соответственно несущая частота и частота модуля­ции, а d - индекс модуляции. Частоты модулированного колеба­ния могут быть получены из выражения cos[wн t+d×sin(wм t)] с ис­пользованием тригонометрических формул и специальных таблиц (функции Бесселя)..

Индекс модуляции d определяется как Dwн /wм =Dfн /fм - от­ношение максимальной девиации частоты (за один период модули­рующего сигнала) к частоте модуляции. Детальный анализ частот­ной модуляции сложен. Рассмотрим на примерах основные черты этого метода. Будем предпо­лагать наличие одиночной частоты модуляции wммм sin(wм t)).

Девиация частоты Dwн прямо пропорциональна мгновенному значению модулирующего сигнала емм sin(wм t). Таким образом, Dwн можно выразить через ем :

Dwн =kf Ам sin(wн t) (10)

где kf - коэффициент пропорциональности, аналогичный по сво­ему характеру чувствительности; он дает девиацию частоты на 1 В (Dw/В). Следовательно, при wн t= 90° (sin(wн t)= 1) Dwн =kf Ам - максимальная девиация частоты синусоидального модулирующего сигнала. Например, если sin(wн t)=0,5, kf =2p×1000 (рад/с)/В=1000 Гц/В и Ам =10В, то мы получаем Dwн =2p×1000×10×0,5=2p×5000 рад/с, т. е. девиацию частоты несущей 5 кГц. Максималь­ное значение Dfн при этих условиях (sin(wн t)= 1) будет составлять 10 кГц. Отметим, что, так как sin(wн t ) может быть равным +1 или -1, то Dfн макс =±10 кГц. Если задано значение fм , то можно вычис­лить индекс модуляции d. Для fм =2000d=10000/2000 (Dfн /fм ); таким образом, d=5. Индекс модуляции должен быть всегда воз­можно большим, чтобы получить свободное от шумов верное воспро­изведение модулирующего сигнала. Девиация частоты Dfн в ЧМ-радиовещании ограничена величиной до +75 кГц. Это приводит к значению d=75/15=5 для звукового модулирующего сигнала с максимальной частотой 15 кГц.

Исследуя изменения частоты несущей с ЧМ, есть соблазн прийти к выводу о том, что ширина полосы, необходимой для ЧМ-передачи, составляет ±Dwн , или 2Dwн , так как несущая меняется по частоте в пределах ±Dwн , т. е. wчм -wн ±Dwн .Этот вывод, однако, полностью ошибочен. Может быть показано, что ЧМ-колебания состоят из несущей и боковых полос аналогично AM с одним лишь существенным различием: при ЧМ существует множество боковых полос (рис. 5). Амплитуды боковых полос связаны весьма сложным образом с индексом модуляции. Отметим, что частоты боковых по­лос связаны лишь с частотой модулирующего сигнала wм , а не с девиацией частоты Dwн . Для предыдущего примера, когда d=5 и wм =15 кГц (максимум), мы получаем семь пар полос (wн ±wм , wн ±2wм , wн ±3wм , и т.д.) с изменяющимися амплитуда­ми, но превышающими значение 0,04Ан . Все другие пары за пре­делами wн ± 7wм имеют амплитуды ниже уровня 0,02Ан .

Первая пара боковых полос может быть описана как 0,33А×[sin(wн +wм )t+sin(wн -wм )t] имеет амплитуду 0,33 Ан ; вторая пара - wн ±2wм - имеет амплитуду 0,047Ан . Отметим, что амплитуды различных боковых полос не являются монотонно убывающими по мере того, как их частоты все более и более удаляются от wн . Фактически в приведенном примере с d= 5 наибольшей пo амплитуде (0,4 Ан ) является четвертая пара боковых полос. Амп­литуды различных боковых полос получены из специальных таблиц, описывающих эти полосы для различных значений d. Очевидно, что ширина полосы, необходимая для передачи семи пар боковых полос, составляет ±7 × 15 кГц, или 14×15 кГц= 210 кГц (для fм =15 кГц). На этом же основании ширина полосы, необходимая для d=10 (Dwн /wм =10), равна 26fм ; 13 боковых полос в этом случае составят 26×15=390 кГц. Таким образом, частотная модуляция требует значительной ширины полосы частот и, как следствие, ис­пользуется только при несущих с частотами 100 МГц и выше.

Рис. 5. Боковые полосы ЧМ.

wн -несущая частота; wм -частота модуляции.

Частотно-модулированная связь гораздо менее чувствительна к помехам. Шумы, попадающие в ЧМ-сигнал, будь то атмосферные возмущения (статические), тепловые шумы в лампах и сопротивле­ниях или любые другие шумы, имеют меньшую возможность влиять на прием, чем в случае AM. Основной причиной этого является по­просту тот факт, что большинство шумов амплитудно модулируют несущую. Делая приемник нечувствительным к изменениям амплиту­ды, практически устраняем эту нежелательную модуляцию. Вос­становление информационного сигнала из ЧМ-волны связано лишь с частотным детектированием, при котором выходной сигнал зависит лишь от изменений частоты ЧМ-сигнала, а не от его амплитуды. Большинство приемников содержит усилитель-ограничитель, который поддерживает постоянную амплитуду ЧМ-колебаний, устраняя тем самым любой АМ-сигнал.

К-во Просмотров: 738
Бесплатно скачать Реферат: Системы связи 2