Реферат: Сонячно-Земні зв язки та їх вплив на людину
Хоча не усі ланки ланцюжка Сонячно-Земних зв'язків однаково вивчені, загалом картина Сонячно-Земних зв'язків представляється якісно . Кількісне дослідження цієї СКПадної проблеми з погано відомими (чи взагалі невідомими) початковими і граничними умовами утруднено через незнання конкретних фізичних механізмів, що забезпечують передачу енергії між окремими ланками.
Поряд з пошуками фізичних механізмів ведуться дослідження інформаційного аспекту Сонячно-Земних зв'язків. Зв'язки виявляються подвійно, у залежності від того, чи плавно стрибкоподібно відбувається перерозподіл енергії сонячних збурювань усередині магнітосфери. У першому випадку Сонячно-Земні зв'язки виявляються у формі ритмічних коливань геофізичних параметром (11-літніх, 27-денних і ін.). Стрибкоподібні зміни зв'язують з так називаним триггерным механізмом, що застосуємо до чи процесів системам, що знаходяться в хитливому стані, близькому до критичного. У цьому випадку невелика зміна критичного параметра (тиску, сили струму, концентрації часток і т.п.) приводить до якісної зміни ходу даного чи явища викликає нове явище. Для приклада можна вказати на явище утворення внетропических циклонів при геомагнітних збурюваннях. Енергія геомагнітного збурювання перетвориться в енергію інфрачервоного випромінювання. Останнє створює невеликий додатковий розігрів тропосфери, у результаті якого і розвивається її вертикальна нестійкість. При цьому енергія розвитий нестійкості може на два порядки перевищувати енергію первісного збурювання.
Новим методом дослідження Сонячно-Земних зв'язків є активні експерименти в магнітосфері й іоносфері по моделюванню ефектів, викликуваних сонячною активністю. Для діагностики стану магнітосфери й іоносфери використовуються пучки електронів, хмари натрію барію ( що випускаються з борта ракети). Для безпосереднього впливу на іоносферу використовуються радіохвилі короткохвильового діапазону. Головна перевага активних експериментів - можливість контролювати деякі початкові умови (параметри пучка електронів, потужність і частоту радіохвиль і т.п.). Це дозволяє більш упевнено судити про фізичні процеси на заданій висоті, а разом зі спостереженнями на інших висотах - про механізм магнітосферно-іоносферної взаємодії, про умови генерації низькочастотних випромінювань, про механізм Сонячно-Земних зв'язків у цілому. Активні експерименти мають також і прикладне значення. Доведено можливість створити штучний радіаційний пояс Землі і викликати полярні сяйва, змінювати властивості іоносфери і генерувати низькочастотне випромінювання над заданим районом.
Вивчення Сонячно-Земних зв'язків є не тільки фундаментальною науковою проблемою, але і має велике прогностичне значення. Прогнози стану магнітосфери й інших оболонок Землі вкрай необхідні для рішення практичних задач в області космонавтики, радіозв'язку, транспорту, метеорології і кліматології, сільського господарства, біології і медицини.
3. Сонячна активність
3.1. Найважливіші прояви й індекси сонячної активності
Однієї із самих чудових особливостей Сонця є майже періодичні, регулярні зміни різних проявів сонячної активності, тобто всієї сукупності явищ на Сонці. Це і сонячні плями - області із сильним магнітним полем і внаслідок цього зі зниженою температурою, і сонячні спалахи - найбільш могутні і швидкі вибухові процеси, що впливають на всю сонячну атмосферу над активною областю, і сонячні волокна - плазменні утворення в магнітному полі сонячної атмосфери, що мають вид витягнутих (до сотень тисяч кілометрів) волоконоподібних структур. Коли волокна виходять на видимий край (лімб) Сонця, можна бачити найбільш грандіозні по масштабах активні і спокійні утворення - протуберанці, що відрізняються багатою розмаїтістю форм і СКП-адною структурою. Потрібно ще відзначити корональні діри - області в атмосфері Сонця з відкритим у міжпланетний простір магнітним полем. Це своєрідні вікна, з яких викидається високошвидкісний потік сонячних заряджених часток.
Сонячні плями - найбільш відомі явища на Сонце. Вперше в телескоп їх спостерігав Г. Галілей у 1610 р. Ми не знаємо, коли і як він навчився послабляти яскраве сонячне світло, але прекрасні гравюри, що зображують сонячні плями й опубліковані в 1613р. у його знаменитих листах про сонячні плями, з'явилися першими систематичними рядами спостережень.
З цього часу реєстрація плям те проводилася, те припинялася, те відновлялася знову. Наприкінці ХІ сторіччя два спостерігачі - Г. Шперер у Німеччині й Е. Маундер в Англії вказали на той факт, що протягом 70-літнього періоду аж до 1716р. плям на сонячному диску, очевидно, було дуже мало. Вже в наш час Д. Эдди, заново проаналізувавши всі дані, прийшов до висновку, що дійсно в цей період був спад сонячної активності, названий Маундерівським мінімумом.
ДО 1843р. після 20-літніх спостережень аматор астрономії Г. Швабі з Німеччини зібрав досить багато даних для того, щоб показати, що число плям на диску Сонця циклічно міняється, досягаючи мінімуму приблизно через кожні одинадцять років. Р. Вольф з Цюріха зібрав усі які тільки міг дані про плями, систематизував їх, організував регулярні спостереження і запропонував оцінювати ступінь активності Сонця спеціальним індексом, що визначає міру "запятненности" Сонця, що враховує як число плям, що спостерігалися в даний день, так і число груп сонячних плям на диску Сонця. Цей індекс відносного числа плям, згодом названий "числами Вольфа", починає свій ряд з 1749 року. Крива середньорічних чисел Вольфа зовсім чітко показує періодичні зміни числа сонячних плям.
Індекс "числа Вольфа" добре витримав іспит часом, але на сучасному етапі необхідно вимірювати сонячну активність кількісними методами. Сучасні сонячні обсерваторії ведуть регулярні патрульні спостереження за Сонцем, використовуючи як міру активності оцінку площ сонячних плям у мільйонних частках площі видимої сонячної півсфери (м.ч.п.). Цей індекс якоюсь мірою відбиває величину магнітного потоку, зосередженого в плямах, через поверхню Сонця.
Групи сонячних плям із усіма супутніми явищами є частинами активних областей. Розвита активна область містить у собі смолоскипову площадку з групою сонячних плям по обох сторони лінії роздягнула полярності магнітного полючи, на якій часто розташовується волокно. Усьому цьому супроводжує розвиток корональної конденсації, густина речовини в який принаймні в кілька разів вище щільності навколишнього середовища. Усі ці явища об'єднані інтенсивним магнітним полем, що досягає величини декількох тисяч Гаусс на рівні фотосфери.
Найбільше чітко границі активної області визначаються по хромосферній лінії ионизованного кальцію. Тому був уведений щоденний кальцієвий індекс, що враховує площі і потужності всіх активних областей.
Найдужчий прояв сонячної активності, що впливає на Землю, - сонячні спалахи. Вони розвиваються в активних областях зі СКП-адною будівлею магнітного полючи і торкаються всієї товщі сонячної атмосфери. Енергія великого сонячного спалаху досягає величезної величини, порівнянної з кількістю сонячної енергії, одержуваною нашою планетою протягом цілого року. Це приблизно в 100 разів більше всієї теплової енергії, которую можна було б одержати при спалюванні всіх розвіданих запасів нафти, газу і вугілля. У той же час це енергія, що випускається всім Сонцем за одну двадцяту частку секунди, з потужністю, що не перевищує сотих часток відсотка від потужності повного випромінювання нашої зірки. В вспалахо-активних областях основна послідовність спалахів великої і середньої потужності відбувається за обмежений інтервал часу (40-60 годин), у той час як малі спалахи й уярчения спостерігаються практично постійно. Це приводить до підйому загального тла електромагнітного випромінювання Сонця. Тому для оцінки сонячної активності, зв'язаної зі спалахами, сталі застосовувати спеціальні індекси, прямо зв'язані з реальними потоками електромагнітного випромінювання. По величині потоку радіовипромінювання на хвилі 10.7 див (частота 2800 МГЦ) у 1963 р. введений індекс F10.7. Він виміряється в сонячних одиницях потоку (с.о.п.), причому 1 с.о.п. = 10-22 Ут/(м2·Гц). Індекс F10.7 добре відповідає змінам сумарної площі сонячних плям і кількості спалахів у всіх активних областях. Для статистичних досліджень в основному використовуються середньомісячні значення.
З розвитком супутникових досліджень Сонця з'явилася можливість прямих вимірів потоку рентгенівського випромінювання в окремих діапазонах.
З 1976 року регулярно виміряється щоденне фонове значення потоку м'якого рентгенівського випромінювання в діапазоні 1-8 A (12.5-1 кэв). Відповідний індекс позначається прописною латинською буквою (A, B, C, M, X), що характеризує порядок величини потоку в діапазоні 1-8 A (10-8 Ут/м2, 10-7 і так далі) з наступним числом у межах від 1 до 9.9, що дає саме значення потоку. Так, наприклад, M2.5 означає рівень потоку 2.5·10-5. У підсумку виходить наступна шкала оцінок:
А(1-9) = (1-9)·10-8 Ут/м2
У(1-9) = (1-9)·10-7
З(1-9) = (1-9)·10-6
М(1-9) = (1-9)·10-5
Х(1-n) = (1-n)·10-4
Це тло змінюється від величин А1 у мінімумі сонячної активності до З5 у максимумі. Ця ж система застосовується для позначення рентгенівського бала сонячного спалаху. Максимальний бал Х20 = 20·10-4 Ут/м2 зареєстрований у спалаху 16 серпня 1989 року.
Останнім часом стало використовуватися у виді індексу, що характеризує ступінь вспышечной активності Сонця, кількість сонячних спалахів за місяць. Цей індекс може бути використаний з 1964 року, коли була введена система визначення, що застосовується зараз, балльности сонячного спалаху в оптичному діапазоні. 3.2. Цикли сонячної активності
Сонячна активність у числах Вольфа і, як з'ясувалося пізніше, і в інших індексах, має циклічний характер із середньою тривалістю циклу в 11.2 року. Нумерація сонячних циклів починається з того моменту, коли почалися регулярні щоденні спостереження числа плям. Епоха, коли кількість активних областей буває найбільшим, називається максимумом сонячного циклу, а коли їх майже немає - мінімумом. За останні 80 років плин циклу трохи прискорилася і середня тривалість циклів зменшився приблизно до 10.5 років. За останні 250 років самий короткий період був дорівнює 9 рокам, а самий довгий 13.5 років. Іншими словами, поводження сонячного циклу регулярно лише в середньому. У підйомі і спаді сонячних циклів існує деяка закономірність. Можливо, це вказує на існування більш тривалого циклу, рівного приблизно 80-90 рокам. Незважаючи на різну тривалість окремих циклів, кожному з них властиві загальні закономірності. Так, ніж інтенсивніше цикл, тим коротше галузь росту і тем длиннее галузь спаду, але для циклів малої інтенсивності саме навпаки - довжина галузі росту перевищує довжину галузі спаду. В епоху мінімуму протягом деякого часу плям на Сонце, як правило, немає. Потім вони починають з'являтися далеко від екватора на широтах ±40°. Одночасно зі зростанням числа сонячних плям самі плями мігрують у напрямку сонячного екватора, що нахилений до площини орбіти Землі (тобто до екліптики) під кутом у 7°. М.Шперер був першим, хто досліджував ці зміни із широтою. Він і Р.Кэррингтон - англійський астроном-аматор - провели великі серії спостережень періодів звертання плям і установили той факт, що Сонце не обертається як тверде тіло - на широті 30°, наприклад, період звертання плям навколо Сонця на 7% більше, ніж на екваторі.
До кінця циклу плями в основному з'являються поблизу широти ±5°. У цей час на високих широтах уже можуть з'являтися плями нового циклу.
У 1908р. Д.Хейл відкрив, що сонячні плями володіють сильним магнітним полем. Більш пізні виміри магнітного полючи в групах, що складаються з двох сонячних плям, показали, що ці дві плями мають протилежні магнітні полярності, указуючи, що силові лінії магнітного полючи виходять з однієї плями і входять в інше. Протягом одного сонячного циклу в одній півсфері (північної чи південний) ведуче пляма (по напрямку обертання Сонця) завжди однієї і тієї ж полярності. По іншу сторону екватора полярність ведучого плями протилежна. Така ситуація зберігається протягом усього поточного циклу, а потім, коли починається новий цикл, полярності ведучих плям міняються. Первісна картина магнітних полярностей у такий спосіб відновлюється через 22 року, визначаючи магнітний цикл Сонця. Це означає, що повний магнітний цикл Сонця СКПадається з двох одинадцятирічних - парного і непарного, причому парний цикл звичайно менше непарного.
Одинадцятирічною циклічністю володіють багато інших характеристик активних утворень на Сонце - площа плям, частота і кількість спалахів, кількість волокон (і відповідно протуберанців), а також форма корони. В епоху мінімуму сонячна корона має витягнуту форму, що додають їй довгі промені, скривлені в напрямку уздовж екватора. У полюсів спостерігаються характерні короткі промені - "полярні щітки". Під час максимуму форма корони округла, завдяки великій кількості прямих радіальних променів.
3.3. Вплив Сонячної активності на людину
В останні роки всі частіше говориться про сонячну активність, магнітні бури і їхній вплив на людей. Тому що сонячна активність наростає, те питання про вплив цього явища на здоров'ї стає в достатньому ступені актуальним.