Реферат: Создание техноприродных систем
Для оценки видов и глубины техногенного воздействия, определения допустимого предела воздействия или допустимой антропогенной нагрузки на геосистему, за которыми наступают необратимые и нежелательные ее изменения, необходимо в каждом конкретном случае определять устойчивость геосистемы к техногенным нагрузкам.
Всякая геосистема приспособлена к определенным условиям, в пределах которых она устойчива и нормально функционирует даже при возмущениях внешних природных факторов (динамичность геосистемы). Техногенные возмущения часто превосходят природные, они более разнообразны, некоторые вообще отсутствуют в природе, например загрязнение искусственными веществами. Все это вызывает необходимость в специальных исследованиях реагирования геосистемы на конкретные воздействия, которые должны быть положены в основу проектов по природопользованию и природообустройству. Отметим здесь важность долговременных количественных прогнозов поведения геосистем при разных вариантах техногенных воздействий.
Степень изменения ландшафта зависит от того, какие компоненты подверглись модификации или даже разрушению. С этих позиций выделяют первичные и вторичные компоненты. Геологический фундамент и свойства воздушных масс, т. е. климат, являются базовыми, первичными, формирующими облик ландшафта. Кстати, их изменить человеку труднее всего, хотя примеры этого уже имеются: разработка месторождений открытым способом, когда карьеры достигают глубины 100...200 м и более, а в плане измеряются десятками километров. Легче всего человек изменяет вторичные компоненты: растительный покров, почвы, сильно воздействует на поверхностные воды, но вторичные компоненты и восстанавливаются легче.
Измененную геосистему нужно рассматривать как особую техноприродную систему, в которую встроены техногенные, инородные для природы блоки: посевы сельскохозяйственных культур, здания, сооружения, коммуникации и т. п. В такой системе техногенные и природные блоки функционируют, подчиняясь природным законам. Вместе с тем надо рассматривать и взаимодействие техногенных блоков, их зависимость от социально-экономических условий, например в отношении собственности: земля принадлежит одному субъекту, а сооружения, построенные на ней, — другому.
Устойчивость техноприродных систем вступает в противоречие с устойчивостью измененной природной системы. Если природная система старается возвратиться в «первобытное» состояние, о чем было сказано ранее, то человек заинтересован в устойчивости техноприродных систем. Критерии устойчивости в обоих случаях противоположны. Если зарастание пашни служит критерием устойчивости геосистемы как природного образования, то этот же процесс рассматривают как свидетельство неустойчивости уже техноприродной системы, в данном случае — агрогеосистемы, назначение которой — поддерживать заданные свойства пашни для получения требуемого урожая определенных культур. Еще пример: осушительная система без поддержки человека приходит в негодность (мелеют каналы, заиляются и зарастают корнями дрены и т. п.). Следовательно, природная геосистема восстанавливает свой естественный водный режим, который был до осушения; и это — критерий ее устойчивости. С точки зрения техноприродной системы эта же ситуация является признаком неустойчивости.
Устойчивость преднамеренно модифицированной геосистемы (техноприродной системы) вместе с встроенным в нее техногенным блоком определяется как способность выполнять заданную социально-экономическую функцию.
Измененные человеком геосистемы, как правило, менее устойчивы, чем первичные, поскольку естественный механизм саморегулирования в них нарушен. Поэтому экстремальные отклонения параметров внешней среды, которые гасятся в естественной геосистеме, могут оказаться разрушительными для антропогенной модификации: один заморозок может погубить культурную растительность, пыльная буря за несколько дней может разрушить почвенный слой на распаханной территории.
Техногенный блок природно-технических систем менее устойчив и может существовать только при постоянной поддержке человеком.
Техноприродные системы природообустройства. Природообустройство — это сложное дорогостоящее ресурсо- и энергоемкое мероприятие, проводимое длительное время, для его осуществления необходимо создание комплекса сложных инженерных сооружений и устройств, надежно функционирующих в разнообразных природных условиях, часто экстремальных, при переменных погодных условиях. Поэтому на больших площадях строят инженерные системы природообустройства, т. е. комплекс сооружений, устройств, машин и оборудования, предназначенных для достижения той или иной цели. Инженерные системы природообустройства по своей сути являются техноприродными системами или природно-техногенными комплексами. При их создании необходимо руководствоваться принципами природообустройства.
К инженерным системам природообустройства относят:
-мелиоративные, предназначенные для реализации требуемого мелиоративного режима земель;
-экологические, предназначенные для восстановления естественной самоочищаемости загрязненных территорий, сокращения поступления на них загрязняющих веществ и их удаления, локализации очага загрязнения;
-природоохранные;
-противостихийные, предназначенные для борьбы с наводнениями, подтоплением, размывом берегов, с оползнями, селями и т. п.;
-регулирования поверхностного стока, необходимые при комплексном использовании водных ресурсов;
-водоснабжения, обводнения и водоотведения.
Состав мелиоративной системы зависит от вида мелиорируемых земель, совокупности регулируемых показателей мелиоративного режима. В общем, мелиоративная система включает регулирующие элементы, непосредственно осуществляющие мелиоративные воздействия, проводящие и ограждающие элементы, источники привлекаемых ресурсов, например воды, приемники технологических сбросов с мелиорируемой территории (дренажные воды, вредные вещества, наносы и т. п.). Помимо этого в состав системы входят объекты энергетического обеспечения, дороги, сооружения; средства контроля, связи и управления, обеспечивающие обратную связь между управляющими воздействиями и управляемым объектом и мониторинг состояния мелиорируемой и прилегающей территории, а также природоохранные сооружения, производственные базы, служебные и жилые помещения службы эксплуатации и консультативной службы, осуществляющей постоянное взаимодействие между землепользователями и мелиораторами.
Мелиоративные системы в зависимости от их крупности, важности могут принадлежать отдельным землепользователям: фермеру, предприятию; группе землепользователей; могут быть муниципальными; крупные системы, имеющие важное значение для экономики, могут быть в собственности субъектов Российской Федерации или даже федеральными.
Мелиорируемые земли, обслуживаемые мелиоративной системой, не входят в ее состав как собственность.
Надежность мелиорации и ее эффективность во многом зависят не только от технического совершенства мелиоративной системы, но и от правильного ее функционирования, соблюдения технологических режимов, умения управлять ею в неопределенных погодных условиях. Это обстоятельство, требующее принятия решений в условиях неопределенности и сопряженное со значительным риском не только экономического ущерба, но и аварий и разрушений, значительно усложняет управление мелиоративной системой по сравнению с другими предприятиями, менее зависящими от внешних условий. Ошибки в управлении гидромелиоративной системой (оросительной или осушительной) могут привести к переувлажнению или иссушению земель, прорыву дамб или плотин, подтоплению земель и др.
Поэтому очень важна правильная, научно обоснованная эксплуатация мелиоративных систем и прежде всего грамотное управление ею, основанное на мониторинге состояния земель, долгосрочном и краткосрочном прогнозе погодных условий. Этому может способствовать моделирование процессов на мелиорируемых землях в режиме реального времени с помощью приведенных далее моделей, разработка вариантов действия системы в зависимости от прогнозов и минимизация риска от принимаемых решений.
Инженерно-экологические системы строят на сильно загрязненных территориях, признанных зоной чрезвычайной экологической ситуации или зоной экологического бедствия: загрязненных нефтепродуктами, тяжелыми металлами, другими техногенными загрязняющими веществами. Состав этих систем зависит от вида и степени загрязнения. Они содержат практически те же элементы, что и мелиоративные системы.
3. Основные положения проектирования техноприродных систем
В основе концепции проектирования и регламентирующих проектную практику принципов по природопользованию и природообустройству заложены следующие положения:
- выбирают из традиционных знаний некоторый минимум, который дополняют новейшими знаниями по ландшафтоведению;
- переводят геосистему в техноприродную геосистему или на более высокий уровень при проектировании техноприродных систем для выполнения ею заданных функций;
- предполагают, что работа на разных стадиях проектирования заключается в последовательном переходе от мелких масштабов (карт, схем, генеральных планов) к крупным масштабам для детальной планировки, при проектировании различных функциональных типов техноприродных систем с помощью своеобразных подходов, учете конкретных природных особенностей;
- переводят знания о геосистеме, используемые при проектировании, в традиционные формы и строго определенный принятый вид, которые будут основой для составления нормативных и рекомендательных документов (норм, правил, положений, указаний, руководств, пособий).
В процессе проектирования технических систем и для сохранения ландшафтов проектировщику необходимы некоторые знания: о природных комплексах, ландшафтах, свойствах ландшафтов, взаимодействии природы и человеческой деятельности, свойствах технической системы, свойствах новой природно-технической геосистемы, об особенностях сложных адаптивных систем и рекомендации, выраженные в виде принципов природообустройства.
При проектировании геотехнических систем необходимо руководствоваться следующими принципами: