Реферат: Строение атомов, концепция непрерывной дескрепы и электромагнитных свойств атомов и материи
Различные предположения о сложной структуре атома долгое время не подтверждались опытами. Лишь проведенные в конце XIX в. эксперименты доказали сложное строение атомов и возможность их взаимного превращения. Активное изучение строения атома началось в 1897 г. после открытия электрона английским физиком Дж. Томсоном. В 1903 г. он предложил первую модель атома: атом представляет собой непрерывно заряженный положительным электрическим зарядом шар, внутри которого около своих положений равновесия колеблются электроны; суммарный заряд электронов равен положительному заряду шара, поэтому атом в целом нейтрален. Однако предположение о непрерывном распределении положительного заряда внутри атома не подтвердилось экспериментом.
В развитии представлений о строении атома велико значение опытов английского физика Э. Резерфорда (1871-1937) по рассеянию альфа-частиц в веществе. Альфа-частицы испускаются при радиоактивных превращениях. Их электрический заряд положителен и равен по модулю двойному заряду электрона. Это тяжелые частицы: масса их примерно в 7 300 раз больше массы электрона. Исследуя прохождение альфа-частиц через золотую фольгу, Резерфорд обнаружил, что основная их часть испытывает незначительные отклонения, а некоторые из них (примерно, одна из 20 000) резко отклоняются от первоначального направления - вплоть до 180°. Поскольку электроны не могут существенно повлиять на характер движения столь тяжелых и быстрых альфа-частиц, Резерфорд сделал вывод: значительное отклонение альфа-частиц обусловлено их взаимодействием с положительным зарядом большей массы. Такое отклонение испытывали лишь немногие альфа-частицы, т.е. те, которые оказались вблизи положительного заряда сравнительно небольших размеров.
В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Поскольку масса электрона ничтожна мала, то почти вся масса атома сосредоточена в его ядре. На долю ядра и электронов, число которых сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой. [3, с.145]
Анализируя результаты опытов, Резерфорд предложил в 1911 г. ядерную (планетарную) модель атома: вокруг положительного ядра, имеющего заряд Ze (Z - порядковый номер элемента в системе Менделеева, е - элементарный заряд), по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Движущиеся по замкнутым орбитам электроны обладают центростремительным ускорением. Согласно классической электродинамике, ускоренные электроны излучают электромагнитные волны, вследствие чего непрерывно теряют энергию. Поэтому электрон, вращаясь вокруг ядра, излучает энергию. В результате потери энергии, двигаясь по спирали и приближаясь к ядру, он в конце концов упадет на него. Таким образом, атом в модели Резерфорда оказался неустойчивой системой.
Попытки создать модель атома в рамках классической физики не привели к успеху: модель Томсона была опровергнута опытами Резерфорда, планетарная же модель не смогла объяснить устойчивость атомов. Преодоление возникших трудностей требовало принципиально нового подхода.
2. Спектры изучения постулатов Бора
Планетарная модель атома позволила объяснить результаты опытов по рассеянию альфа-частиц вещества, однако возникли принципиальные трудности при обосновании устойчивости атомов.
Первая попытка построить качественно новую - квантовую - теорию атома была предпринята в 1913 г. Нильсом Бором. Он поставил цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил ядерную модель Резерфорда. Он предположил, что электроны движутся вокруг ядра по круговым орбитам. Движение по окружности даже с постоянной скоростью обладает ускорением. Такое ускоренное движение заряда эквивалентно переменному току, который создает в пространстве переменное электромагнитное поле. На создание этого поля расходуется энергия. Энергия поля может создаваться за счет энергии кулоновского взаимодействия электрона с ядром. В результате электрон должен двигаться по спирали и упасть на ядро. Однако опыт показывает, что атомы - очень устойчивые образования. Отсюда следует вывод, что результаты классической электродинамики, основанной на уравнениях Максвелла, неприменимы к внутриатомным процессам. Необходимо найти новые закономерности. В основу своей теории атома Бор положил следующие постулаты. [3, с.145]
Первую попытку создать качественно новую модель атома предпринял в 1913 году датский физик Нильс Бор. Он связал в единое целое эмпирические закономерности линейчатого спектра излучения атома водорода, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории атома Бор положил два постулата.
Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по таким орбитам не сопровождается излучением электромагнитных волн.
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией
hv = En-Em,
равной разности энергий En и Em, соответствующих стационарным состояниям атома до и после излучения (поглощения). [3, с.146]
Переходу электрона со стационарной орбиты с номером т на стационарную орбиту с номером п соответствует переход атома из состояния с энергией Em в состояние с энергией En (рис.1). При En > Em возможен переход атома из состояния с большей энергией в состояние с меньшей энергией, т.е. переход электрона с более удаленной от ядра орбиты на более близкую, при котором излучается фотон. Поглощение фотона происходит при переходе атома в состояние с большей энергией, т.е. переход электрона на более удаленную от ядра орбиту.
Набор возможных дискретных частот квантовых переходов определяет линейчатый спектр излучения атома.
Рис.1. К пояснению постулатов Бора.
Модель атома Бора блестяще объяснила экспериментально наблюдаемый линейчатый спектр излучения атомов водорода. Такой успех достигнут ценой отказа от фундаментального положения классической электродинамики. Поэтому большое значение имело прямое экспериментальное подтверждение справедливости постулатов Бора, особенно первого - о существовании стационарных состояний (второй постулат можно рассматривать как следствие закона сохранения энергии и гипотезы о существовании фотонов). Существование стационарных состояний и дискретность значений энергии атомов экспериментально подтвердили в 1913 г. немецкие физики Д. Франк и Г. Герц при исследовании взаимодействия электронов с атомами газообразной ртути.
Несмотря на несомненный успех концепции Бора в объяснении структуры атома водорода, для которого удалось создать количественную теорию спектра излучения, построить подобную теорию для следующего за водородом атома гелия на основании модели Бора не удалось. В современном представлении определенные орбиты, по которым движется электрон в атоме Бора, отражает один из этапов в понимании структуры атома. На самом деле движение электронов в атоме различных элементов имеет сложный характер и объясняется в рамках квантово-механической концепции. [3, с.146]
3. Корпускулярно-волновые свойства микрочастиц
Если поведение атомов так непохоже на наш обыденный опыт, то к нему очень трудно привыкнуть. И новичку в науке, и опытному физику - всем оно кажется своеобразным и туманным. Даже большие ученые не понимают его настолько, как им хотелось бы, и это совершенно естественной потому что весь непосредственный опыт человека, вся интуиция - все прилагается к крупным телам. Мы знаем что будет с большим предметом; но именно так мельчайший тельца не поступают. Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом. В доквантовой физике "понять" означало составить себе наглядный образ объекта или процесса. Квантовую физику нельзя понять в таком смысле слова. Всякая наглядная цель неизбежно будет действовать по классическим законам и поэтому непригодна для представления квантовых процессов. Поэтому самое правильное, что можно сделать, - это отказаться от попыток строить наглядные модели поведения квантовых объектов. Отсутствие наглядности поначалу может вызвать чувство неудовлетворенности, но со временем это чувство проходит, и все становится на свои места. [2, с.172]
B первое время физики были поражены необычными свойствами тех мельчайших частиц материи, которые они изучали микромире. Попытки описать, а тем более объяснить свойства микрочастиц с помощью понятий и принципов классической физики потерпели явную неудачу. Поиски новых понятий и методов объяснения в конце концов привели к возникновению новой квантовой механики, в окончательное построение и обоснование которой значительный вклад внесли Шредингер, В. Гейзенберг, М. Борн. В самом начале эта механика была названа волновой в противоположность обычной механике, которая рассматривает свои объекты как состоящие из корпускул, или частиц. В дальнейшем для механики микрообъектов утвердилось название квантовой механики.
Для облегчения понимания корпускулярно-волновой природы микрочастиц полезно рассмотреть такую же двойственную природу поведения электромагнитных волн, в частности света. В результате углубления представлений о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу) эффект, явление Комптона). Рассмотрим их.
Фотоэлектрическим эффектом, или фотоэффектом, называется испускание электронов веществом под действием света. В 1905 г.А. Эйнштейн показал, что все закономерности фотоэффекта легко объясняются, если предположить, что свет поглощается такими же порциями (квантами) энергии Е = hχ, какими он, по предположению Планка, испускается. По мысли Эйнштейна, энергия, полученная электроном, доставляется ему в виде кванта hv, который усваивается им целиком. Часть этой энергии, равная работе выхода, т.е. наименьшей энергии, необходимой электрону, чтобы удалиться из тела в вакуум, затрачивается на то, чтобы электрон мог покинуть тело. Остаток энергии образует кинетическую энергию Ек электрона, покинувшего вещество. В этом случае должно выполняться соотношение
которое называется формулой Эйнштейна. Отсюда вытекает, что в случае, когда работа выхода А превышает энергию кванта hv, электроны не могут покинуть металл. Следовательно, для возникновения фотоэффекта необходимо, чтобы энергия кванта была больше работы выхода. Частота v0, ниже которой не наблюдается фотоэффект, называется красной границей фотоэффекта. Эйнштейн выдвинул гипотезу, что свет распространяется в виде дискретных частиц, названных световыми квантами. Впоследствии эти частицы получили название фотонов. Энергия фотона определяется его частотой Е = hv, масса покоя фотона равна нулю, и фотон всегда движется со скоростью с. Сказанное означает, что фотон представляет собой частицу особого рода, отличную от таких частиц, как электрон, протон и т.п., которые могут существовать, двигаясь со скоростями, меньшими с, и даже покоясь. [2, с.173]
Поток фотонов, падающих перпендикулярно на поглощающую свет поверхность, оказывает на нее давление. Если плотность фотонов равна n, то давление света равно Р = nΕ = nhv, так как каждый фотон сообщает стенке импульс
Особенно отчетливо проявляются корпускулярные свойства света в явлении, которое получило название эффекта Комптона. В 1923 г.А. Комптон, исследуя рассеяние рентгеновских лучей различными веществами, обнаружил, что в рассеянных лучах наряду с излучением первоначальной длины волны содержатся также лучи большей длины волны. Разность между этими длинами волн оказалась зависящей только от угла, образуемого направлением рассеянного излучения с направлением первичного пучка. От первоначальной длины волны и от природы рассеивающего вещества разность им волн не зависит. Все особенности эффекта Комптона можно объяснить, рассматривая рассеяние как процесс упругого столкновения рентгеновских фотонов с практически ободными электронами. Свободными можно считать слабее всего связанные с атомами электроны, энергия связи которых значительно меньше той энергии, которую фотон может передать электрону при соударении. Таким образом, мы рассмотрели ряд явлений, в которых свет ведет себя как поток частиц (фотонов). Однако не надо забывать, что такие явления, как интерференция и дифракция света, могут быть объяснены только на основе волновых представлений. Таким образом, свет обнаруживает корпускулярно-волновой дуализм (двойственность): в одних явлениях проявляется его волновая природа, и он ведет себя как электромагнитная волна, в других явлениях проявляется корпускулярная природа света, и он ведет себя как поток фотонов. [2, с.174]
Новый радикальный шаг в развитии физики был связан с распространением корпускулярно-волнового дуализма на мельчайшие частицы вещества - электроны, протоны, нейтроны и другие микрообъекты. В классической физике вещество всегда считалось состоящим из частиц, и потому волновые свойства казались явно чуждыми ему. Тем удивительнее оказалось открытие о наличии у микрочастиц волновых свойств, первую гипотезу о существовании которых высказал зал в 1924 г. известный французский ученый Луи де Бройль "В оптике, - писал он, - в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка? ". Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы и случае света. По идее де Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, с частотой