Реферат: Структурно-механические свойства бродящего теста
5,9/5,4
1,9/6,2
6,4/5,4
3,2/8,4
69/89
53/220
50/71
50/221
72/67
78/45
77/73
78/45
74/64
82/65
78/67
76/70
59/52
47/50
68/—15
50/—55
Примечание. В числителе приведены данные по небродящему тесту, в знаменателе — по бродящему.
Тесто из пшеничной муки I сорта является менее сложной лабильной структурой, чем тесто из муки II сорта: в нем менее активны процессы гидролиза, меньше содержится сахаров и других соединений, изменяющих во времени упруго-эластичные свойства структуры. По этой причине отличия структуры небродяще- го теста из муки I сорта должны быть наиболее отчетливы.
Как показывают результаты табл. 4.1, непосредственно после замешивания небродящее тесто обоих образцов имело модули сдвига и вязкость, относительные пластичность и эластичность большие, а η/Е меньшее, чем у бродящего теста. После 2-часового брожения вязкость теста и η/Е не уменьшились, как у небродящего теста, а наоборот, увеличились, а пластичность уменьшилась. По указанной причине показатель К имел отрицательную величину, характеризуя не разжижение, а увеличение вязкости структуры.
Результаты сравнения механических свойств небродящего и бродящего пшеничного теста из двух образцов муки II сорта, приведенные в табл. 3.1, в основном полностью подтверждают закономерности, установленные для теста из муки I сорта; они, однако, представляют несомненный интерес потому, что процесс его выдержки продолжался до 24 ч. Известно, что брожение прессованных хлебопекарных дрожжей при их обычной дозировке (около 1 % к муке) заканчивается обычно на отрезке времени 3—4 ч (продолжительность брожения опары). По истечении этого времени тесто пополняют свежей порцией муки и перемешивают, после чего брожение в нем возобновляется. При отсутствии добавок муки и перемешивания спиртовое брожение уступает кислотному. Такое тесто, приобретая излишние количества этилового спирта и кислот, растворяет белки клейковины (разжижает), теряя углекислоту — уменьшает объем, становится более плотным. Из табл. 3.1 видно, что бродящее тесто после 6 ч и особенно после 24 ч брожения по величинам модулей сдвига, вязкости, относительных пластичности и эластичности приближается к этим показателям небродящего теста. Это показывает, что процессы дрожжевого брожения продолжительностью до 6 ч являются основной причиной существенных отличий структуры бродящего теста от его небродящей структуры. Опытами установлено, что образцы бродящего пшеничного теста из муки I и II сортов имеют структуру, обладающую более совершенными свойствами упругости-эластичности (меньшим модулем сдвига), большей вязкостью и формоустойчивостью (η/Е), а также большей стабильностью во времени в сравнении со структурой небродящего теста. Основной причиной этих отличий следует считать процесс спиртового брожения хлебопекарных дрожжей в бродящем тесте, образование в нем газонаполненных пор, вызывающих перманентное увеличение объема, развитие упруго-пластичных деформаций и упрочнение структуры вследствие ориентации полимеров в плоскостях сдвига. Кислотное брожение в нем менее значительно и, как показано ниже, влияет на эти свойства путем изменений процессов набухания и растворения соединений муки.
ЗАВИСИМОСТЬ МЕХАНИЧЕСКИХ СВОЙСТВ БРОДЯЩЕГО ТЕСТА И КАЧЕСТВА ХЛЕБА ОТ ВИДА И СОРТА МУКИ
Качество хлебных изделий — их объемный выход, форма, структура пористости и другие характеристики, определяются сортом муки и соответственно номируются ГОСТами.
Структура бродящего теста является непосредственным материалом, из которого получают хлебные изделия путем его термической обработки в печи. Представляло интерес исследование биохимических и структурно-механических свойств бродящего пшеничного теста в зависимости от сорта муки. Для указанной цели семь образцов мягких краснозерных пшениц размалывали на лабораторной мельнице трехсортным помолом с общим выходом в среднем 78%. Затем мы исследовали газообразующую и газоудерживающую способность муки, структурно-механические характеристики сброженного теста после его расстойки, а также сырых клейковинных белков и их содержание в муке, удельный объем (в см3 /г) формового, а также HID круглого подового хлеба, выпеченного по ГОСТ 9404—60. Полученные результаты приведены в табл. 4.2. Они показали, что выход сортовой муки даже в условиях лабораторного опытного помола существенно колеблется и тем сильнее, чем выше ее сорт. Таким образом, технология помола зерна должна оказывать влияние на химический состав, следовательно, и на структуру теста. Она является одним из существенных многочисленных факторов, влияющих на качественные показатели муки, теста и хлебных изделий.
Таблица 4.2
Биохимические и структурно-механические характеристики
белков клейковины бродящего теста и хлеба
(средние данные)
??????????. ? ????????? ?????? ?? ??????, ? ??????????? ? ?? ?????.
Технологические свойства зерна и муки каждого сорта характеризует прежде всего их газообразующая способность. Это свойство характеризует способность зерна и муки превращать химическую энергию окисления углеводов в тепловую и механическую энергию движения бродящего теста, преодолевающу инерцию его массы. Определение газообразующей способности муки сопровождается учетом количества выделенной С02 . Ее количество, задержанное тестом, определяет его. газоудерживание по приросту объема. Этот физико-химический показатель характеризует своим обратным значением газопроницаемость теста по углекислому газу. Последняя зависит от структуры и величины основных упруго-пластичных (Е, η, η/Е) характеристик теста. Опыты показали, что газообразующая способность муки значительно увеличивалась от высшего к первому и второму сортам, тогда как объемный выход хлеба, наоборот, понижался.
Газоудерживающая способность теста находится в прямой зависимости от газообразующей способности; несмотря на это, она в абсолютном и относительном (в % к газообразованию) значениях не увеличивалась, но заметно и закономерно понижалась с понижением сорта муки. Между абсолютным значением удержанного тестом СО и объемными характеристиками хлеба (объемным Выходом, удельным объемом) имеется тесная прямая зависимость. Изложенное позволяет сделать вывод, что данные характеристики качества хлеба определяются в основном не биохимическими, а физико-химическим (газопроницаемостью) и механическими свойствами (η, Е и η/Е) теста. Последние зависят в основном от соответствующих свойств сырых клейковинных белков и их содержания в тесте.
Опыты показали, что содержание сырых белков клейковины закономерно увеличивалось с понижением силы зерна и влагоем-кости (вязкости) муки и ее сорта. Структура белков муки высшего сорта имела более значительные величины модуля сдвига, а в среднем — и вязкости, чем структура белков муки I сорта. Это свидетельствует о их большей статистической молекулярной массе. Белки муки I сорта имели величину модуля сдвига и вязкость меньшие, чем эти характеристики белков муки II сорта, но превышали их по величине η/Е. Это характеризует их большую эластичность и формоустойчивость.
Газоудерживающая способность теста и объемный выход хлебных изделий прямо зависят от продолжительности периода релаксации напряжений клейковинных белков и теста, или η/Е. Отношение вязкости к модулю клейковинных белков муки II сорта было значительно меньшим, чем у белков муки высшего и I сортов.
Газоудерживающая способность теста из сортовой пшеничной муки зависела от соответствующих величин его модуля сдвига и вязкости. Эти характеристики с понижением сорта муки уменьшались аналогично способности газоудерживания.
Установлено, что бродящее тесто из муки высшего сорта влажностью 44% подобно сырым клейковинным белкам этой муки имело наиболее значительные величины модулей сдвига, вязкости и отношения вязкости к модулю, наименьшую относительную пластичность. Из этого теста были получены хлебные изделия наиболее высокой пористости, удельного объема формового, а также отношения высоты к диаметру подового хлеба. Таким образом, несмотря на значительную вязкость наименьшее газообразование благодаря высокому η/Е из этой муки получено тесто и хлеб высокого объемного выхода. Высокие величины вязкости и η/Е способствовали получению подового хлеба с наиболее высоким Н/Д.
Тесто из муки I сорта влажностью 44% по величинам газоудерживания, механическим характеристикам и качеству хлеба незначительно уступало качеству теста из муки высшего сорта, оно имело пониженные на 14—15% вязкость, η/Е теста, Н/Д. Это свидетельствует о том, что снижение вязкости теста из муки I сорта способствовало как развитию удельного объема формового, так и увеличению расплываемости подового хлеба.
Тесто из муки II сорта имело более высокую влажность (45%). Несмотря на наибольшее газообразование, оно значительно уступало тесту высшего и I сортов муки по величинам газоудерживания, вязкости. Отношение вязкости к модулю у этого теста, как и у клейковинных белков, было меньшим, а относительная пластичность более высокой, чем у теста из муки высшего и I сортов. Качество полученных хлебных изделий было гораздо ниже качества изделий из муки высшего и I сортов.
В целях уточнения влияния структурно-механических характеристик бродящего теста на физические свойства хлебных изделий мы дифференцировали результаты опытов на две группы. Первая группа образцов каждого сорта имела в среднем более высокие, чем среднеарифметические, модули сдвига и вязкость, вторая группа —более низкие. Учтены также характеристики газоудерживания теста и упруго-пластичных свойств сырых клейковинных белков (табл. 4.3).
Таблица 4.3
??????????? ?????????????? ????? ?????????? ? ?????????? ????????