Реферат: Сверхбольшие интегральные схемы
технологию сверхбольших кремниевых схем с минимальными размерами в глубокой субмикронной области;
технологию сверхскоростных гетеропереходных приборов и интегральных схем на основе арсенида галлия, германия на кремнии и других соединений;
технологию получения наноразмерных приборов, включая нанолитографию.
При реализации этих направлений предусматривается создание сверхчистых монокристаллических полупроводниковых материалов и технологических реагентов, включая газы и жидкости; обеспечение сверх чистых производственных условий (по классу 0,1 и выше) в зонах обработки и транспорта пластин; разработка технологических операций и создание комплекса оборудования на новых физических принципах, в том числе кластерного типа, с автоматизированным контролем процессов, обеспечивающим заданную прецизионность обработки и низкий уровень загрязнения, а также высокую производительность процессов и воспроизводимость результатов, качество и надежность электронных элементов.
Технология сверхбольших интегральных схем обеспечивает разработку и промышленное освоение выпуска широкой номенклатуры интегральных схем, составляющих элементную базу высокопроизводительных ЭВМ, специализированной и бытовой радиоэлектронной аппаратуры, средств связи и телекоммуникаций, в том числе космического базирования. При данной технологии возможные минимальные рабочие размеры составляют 0,1-0,5 мкм и менее (до 70 нм к 2010 году), достигаются высокая производительность за счет использования пластин большого диаметра (200 и более мм) и полной автоматизации процессов, значительный процент выхода годных электронных приборов и высокая окупаемость вкладываемых в производство средств.
Кремниевая технология является основой создания элементной базы радиоэлектроники, вычислительной техники и средств автоматизации и связи широкого применения. Технология гетеропереходных интегральных схем благодаря высокому быстродействию этих приборов ориентирована на специализированные сверхскоростные применения, включая космическую технику, элементную базу суперкомпьютеров, технику связи и телекоммуникаций, а также специальную аппаратуру оборонного назначения.
Нанотехнология станет промышленной приблизительно начиная с 2010 года, что откроет перспективу создания принципиально нового поколения приборов и интегральных схем на новых физических эффектах и приведет в дальнейшем к коренным преобразованиям во многих областях деятельности, в первую очередь - в науке, образовании, управлении производством, в том числе при создании микро роботов, персональных средств связи, глобальных телекоммуникаций, вычислительных устройств на нейросетевых принципах.
2. n -МОП СБИС ТЕХНОЛОГИЯ
2.1 Основы технологии производства n-МОП СБИС
Транзистор на основе структуры металл - диэлектрик - полупроводник (МОП) является одним из наиболее широко используемых элементов СБИС. Первый транзистор, работающий на эффекте поля, был продемонстрирован в 1960 году. Сначала полевые транзисторы с двуокисью кремния в качестве подзатворного диэлектрика формировались на подложке n- типа проводимости. Затем из-за большей подвижности электронов, чем у дырок при формировании сверхбольших быстродействующих интегральных схем стали использовать n- канальные транзисторы, формируемые на p- подложке.
Рассмотрим основные технологические этапы производства n-МОП СБИС на примере создания логического вентиля И-НЕ с двумя входами.
Принципиальная схема вентиля (инвертора) приведена на рисунке.
Схема состоит из последовательно соединенных двух транзисторов, работающих в режиме обогащения (нормально закрытых) и одного транзистора, работающего в режиме обеднения (нормально открытый). Все транзисторы располагаются между шиной источника питания Vdd и заземляющей шиной Vss. Затворы первых двух транзисторов служат входами схемы, а затвор третьего транзистора, соединенный с истоком второго, является выходом инвертора.
Нормально открытый транзистор служит источником тока для двух остальных. Выходное напряжение имеет низкое значение (логический нуль) только в том случае, когда оба первых транзистора открыты, т.е. на их затворы подан высокий потенциал - логическая единица.
Подложка. В качестве подложки выбирают кремний p- типа проводимости легированный бором КДБ (100) с концентрацией примеси 1015 - 1016 см-3 . Выбор такой концентрации обусловлен несколькими причинами. С одной стороны уменьшение содержания примеси приводит к снижению чувствительности порогового напряжения к напряжению смещения на подложке и уменьшению емкости p-n переходов, приводя к увеличению быстродействия транзистора. С другой стороны возрастает концентрация неосновных носителей, вызывающих рост тока утечки через обратно смещенный p-n переход, что может привести к соприкосновению областей пространственного заряда стока и истока транзистора (прокол). Одним из вариантов решения этого противоречия является выращивание слаболегированных эпитаксиальных кремниевых слоев на сильнолегированной подложке, имеющей малую концентрацию неосновных носителей.
Ориентация кремниевой подложки (100) имеет преимущество по сравнению с (111), заключающееся с более высокой подвижности электронов, обусловленной низкой плотностью поверхностных состояний на границе кремний-диэлектрик.
2.2 Этапы технологического процесса .
1 этап.
Ионная имплантация бора для создания изоляции между транзисторами с помощью p-n переходов.
На поверхность кремниевой подложки наносятся промежуточный слой термической двуокиси кремния и слой нитрида кремния, играющий роль маски при последующем локальном окислении кремния. Далее с помощью процесса литографии на поверхности вытравливаются окна, в которые осуществляется ионная имплантация бора. Иногда имплантацию осуществляют через слой окисла для уменьшения концентрации примеси в подложке и глубины ее проникновения.
2 этап.
На этом этапе проводятся следующие технологические операции:
- локальное окисление кремния (ЛОКОС процесс );
- формирование подзатворного окисла (после удаления промежуточных
слоев двуокиси и нитрида кремния);
- имплантация бора для регулировки порогового напряжения нормально
закрытых транзисторов; -
- формирование окна под скрытый контакт.
3 этап.
На данном этапе проводится ионная имплантация мышьяка для формирования канала нормально открытого транзистора. Использование мышьяка вместо фосфора обусловлено меньшей его глубиной в полупроводниковую подложку.
4 этап.
Проводится нанесение поликристаллического кремния с его последующим легированием мышьяком. Поликремний выполняет роль будущих затворов, предотвращает p- каналы от дальнейшей перекомпенсации акцепторной примеси мышьяком и служит материалом для последующего соединения стока и затвора нормально открытого транзистора. На этом этапе достигается самосовмещение стоков, истоков и затворов.
5 этап.
Заключительный этап формирования схемы. На нем осуществляются:
- литография под металлизацию к стокам и истокам транзисторов
- нанесение фосфор силикатного стекла (ФСС). ФСС предотвращает диффузию ионов натрия, сглаживает рельеф поверхности, производит дополнительную активацию примеси.
- формируется пассивирующий диэлектрический слой (окисел или плазмохимический нитрид кремния)
3. СБИС программируемой логики (ПЛ.)
Отечественным производителям электронной техники трудно конкурировать с зарубежными фирмами в области массового производства товаров широкого потребления. Однако в области разработки и создания сложной наукоемкой продукции в России сохранились условия, кадры, научный потенциал. Большое число предприятий и учреждений способно разрабатывать уникальные электронные устройства. Высокотехнологичным "сырьем" для таких разработок в области цифровой электроники служат легко доступные на отечественном рынке электронные компоненты: микропроцессоры, контроллеры, СБИС памяти и др. - все, что позволяет решать задачи специальной обработки сигналов и вычислений программным путем (со свойственными программной реализации достоинствами и недостатками). Микропроцессорная техника давно и прочно укоренилась в отечественных разработках. Однако в последние годы появилась новая элементная база - СБИС программируемой логики (programmable logic device - PLD), которая, удачно дополняя и заменяя микропроцессорные средства, в ближайшие годы станет "настольным материалом" для разработчиков. СБИС ПЛ оказываются вне конкуренции в областях, где требуется создание высокопроизводительных специализированных устройств, ориентированных на аппаратную реализацию. Аппаратное решение задач обеспечивает распараллеливание процесса обработки и увеличивает производительность в десятки раз по сравнению с программным решением, а использование СБИС ПЛ, в отличие от специализированных СБИС, обеспечивает такую же гибкость реализации, как у любых программных решений. В последние годы динамика развития и производства СБИС ПЛ. уступает только микросхемам памяти и превышает 50% в год.
СБИС ПЛ представляют собой полузаказную СБИС и включают реализованные на кристалле универсальные настраиваемые пользователем функциональные преобразователи и программируемые связи между этими преобразователями. По сравнению с базовыми матричными кристаллами (БМК) использование СБИС ПЛ обеспечивает существенно более короткий цикл разработки, экономический выигрыш при мелкосерийном (до нескольких тысяч изделий) производстве и возможность внесения изменений в проект на любом этапе разработки. Заказную СБИС или БМК разработают для Вашего уникального проекта за несколько месяцев. Но только на СБИС ПЛ Вы запрограммируете его сами за кратчайшее время и с минимальными затратами. Разработчик специализированного цифрового устройства, используя средства САПР СБИС ПЛ, в привычной ему форме (схемы, текстовое описание) задает требуемое устройство и получает программирующий СБИС ПЛ файл, который используется при программировании на программаторе или непосредственно на плате. Программирование заключается в задании нужных свойств функциональным преобразователям и установлении необходимых связей между ними. Программируемые элементы - электронные ключи. Такой цикл проектирования/изготовления занимает незначительное время, изменения могут вноситься на любой стадии разработки за считанные минуты, а внедрение новых средств проектирования на начальном этапе практически не требует материальных затрат.
Производители, архитектура и возможности существующих в настоящее время типов СБИС ПЛ разнообразны. Систематизация микросхем гибкой логики производится обычно по следующим классификационным признакам:
степень интеграции (логическая емкость);
архитектура функционального преобразователя;