Реферат: Сводка статистических данных
Например, если из 100 деталей выборки (n =100), 95 деталей оказались стандартными (т =95), то выборочная доля
w =95/100=0,95 .
Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.
Ошибка выборки ε или, иначе говоря, ошибка репрезентативности представляет собой разность соответствующих выборочных и генеральных характеристик:
• для средней количественного признака
; (форм. 1)
• для доли (альтернативного признака)
; (форм. 2)
Ошибка выборки свойственна только выборочным наблюдениям. Чем больше значение этой ошибки, тем в большей степени выборочные показатели отличаются от соответствующих генеральных показателей.
Выборочная средняя и выборочная доля по своей сути являются случайными величинами, которые могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок — среднюю ошибку выборки.
От чего зависит средняя ошибка выборки? При соблюдении принципа случайного отбора средняя ошибка выборки определяется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, всё более точно характеризуем всю генеральную совокупность.
Средняя ошибка выборки также зависит от степени варьирования изучаемого признака. Степень варьирования, как известно, характеризуется дисперсией σ2 или w (1- w ) — для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка выборки, и наоборот. При нулевой дисперсии (признак не варьирует) средняя ошибка выборки равна нулю, т. е. любая единица генеральной совокупности будет совершенно точно характеризовать всю совокупность по этому признаку.
Зависимость средней ошибки выборки от ее объема и степени варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х , p ) неизвестны, и следовательно, не представляется возможным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).
- При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:
• для средней количественного признака
; (форм. 3)
• для доли (альтернативного признака)
; (форм. 4)
Поскольку практически дисперсия признака в генеральной совокупности σ2 точно неизвестна, на практике пользуются значением дисперсии S2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.
Таким образом, расчетные формулы средней ошибки выборки при случайном повторном отборе будут следующие:
• для средней количественного признака
; (форм. 5)
• для доли (альтернативного признака)
. (форм. 6)
Однако дисперсия выборочной совокупности не равна дисперсии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут приближенными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:
. (форм. 7)
Так как п/ (n -1) при достаточно больших п — величина, близкая к единице, то можно принять, что , а следовательно, в практических расчетах средних ошибок выборки можно использовать формулы (форм. 5) и (форм. 6). И только в случаях малой выборки (когда объем выборки не превышает 30) необходимо учитывать коэффициент п /(n -1) иисчислять среднюю ошибку малой выборки по формуле:
. (форм. 8)
- XПри случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подкоренное выражение умножить на 1-(n/N), поскольку в процессе бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной выборки расчетные формулы средней ошибки выборки примут такой вид: