Реферат: Техническое зрение роботов
Рассмотрим метод соединения граничных точек путем определения их расположения на кривой специального вида. Первоначально п редполагая, что на плоскости ху образа дано п точек, тре буется найти подпоследовательности точек, лежащих на прямых линиях. Одно из возможных решений состоит в построении всех линий, проходящих через каждую пару точек, а затем в нахождении всех подпоследовательностей точек, близких к определенным линиям. Задача, связанная с этой процедурой, заключается в нахождении п(п— 1)/2 ~ п2 линий и затем в осуществлении п [п(п— 1)]/2 ~ п 3 сравнений каждой точки со всеми линиями. Этот процесс трудоемок с вычислительной точки зрения за исключением самых простых приложений.
Данную задачу можно решить по-другому, применяя подход, предложенный Хоугом и называемый преобразованием Хоуга . Рассмотрим точку (х i y i ) и общее уравнение прямой линии у: = аx i + bi . Имеется бесконечное число линий, проходящихчерез точку(х i yi ), но все они удовлетворяют уравнению у:= аx i +bi при различных значениях а и b. Однако, если мы запишем это уравнение в виде b = -хi а + yi и рассмотрим плоскость а b (пространство параметров), тогда мы имеем уравнение одной линии для фиксированной пары чисел (х i yi ). Более того, вторая точка (х j , у j ) также имеет в пространстве параметров связанную с ней линию, которая пересекает другую линию, связанную с точкой (хi yi ) в точке (а', b’), где значения а' и b’— параметры линии, на которой расположены точки(хi yi )и (хj , у j ) в плоскости ху. Фактически все точки, расположенные на этой линии, в пространстве параметров будут иметь линии пересечения в точке (а', b’) .
Вычислительная привлекательность преобразования Хоуга заключается в разделении пространства параметров на так называемые собирающие элементы , где (aмакс , амин ) и (bмакс , bм ин )—допустимые величины параметров линий. Собирающий элементA (i, j) соответствует площади, связанной с координатами пространства параметров (а i , bj ). Вначале эти эле менты считаются равными нулю. Тогда для каждой точки (xk , у k ) в плоскости образа мы полагаем параметр а равным каждому из допустимых значений на оси а и вычисляем соответствующее b, используя уравнение b = - х k + y k Полученное значение b затем округляется до ближайшего допустимого значения на оси b. Если выбор aр приводит к вычислению b q , мы полагаем А( р, q) == А( р, q) + 1. После завершения этой процедуры значение М в элементеA (i, j) соответствует М точкам в плоскости xy, лежащим на линииy= ai x+b. Точность расположения этих точек на одной прямой зависит от числа разбиений плоскости аb. Отметим, что, если мы разбиваем ось а на К частей, тогда для каждой точки(xk , у k ) мы получаем К значений b, соответствующих К возможным значениям а. Поскольку имеется п точек образа, процесс состоит из пК вычислительных операций. Поэтому приведенная выше процедура линейна относительно п и имеет меньшее число вычислительных операций, чем процедура, описанная выше, если К<= п.
Проблема, связанная с представлением прямой линии уравнением у = ах + b, состоит в том, что оба параметра а и b стремятся к бесконечности, если линия принимает вертикальное положение. Для устранения этой трудности используется нормальное представление прямой линии в виде
xc os q +y sin q = b .
Это представление для построения таблицы собирающих элементов используется так же, как метод, изложенный выше, но вместо прямых линий мы имеем синусоидальные кривые в плоскости q r . Как и прежде, М точек, лежащих на прямойxcos q i +у sinq i == r i , соответствуют М синусоидальным кривым, которые пересекаются в точке (q i ,r i ) пространства параметров. Если используется метод возрастания q и нахождения для него соответствующего r , процедура дает М точек в собирающий элемент А (i, j), связанный с точкой (q i ,r i ).
2.1.3.Глобальный анализ с помощью методов теории графов.
Изложенные выше методы основаны на задании последователь ности точек контура, полученных в результате градиентного преобразования. Этот метод редко применяется для предварительной обработки данных в ситуациях, характериз уемых высоким уровнем шума, вследствие того, что градиент является производной и усиливает колебания интенсивности. Рассмотрим глобальный подход, основанный на представлении сегментов контура в виде графа и поиске на графе пути наименьшей стоимости, который соответствует значимым контурам. Этот подход представляет приближенный метод, эффективный при наличии шума. Как и следует ожидать, эта процедура значительно сложнее и требует больше времени обработки, чем методы, изложенные выше.
Сначала дадим несколько простых определений. Граф G= (N, А) представляет собой конечное, непустое множество вершин N вместе с множеством А неупорядоченных пар различных элементов из N. Каждая пара из А называется дугой.
Граф, в котором дуги являются направленными, называется направленным графом. Если дуга выходит из вершины n i , к вершине п j , тогда п j называется преемником вершины ni . В этом случае вершинаn i называется предшест венником вершины п j . Процесс идентификации преемников каждой вершины называется расширением этой вершины. В каждом графе определяютс я уровни таким образом, чтобы нулевой уровень состоял из единственной вершины, называемой начальной, а последний уровень—из вершин, называемых целевыми. Каждой дуге (n i п j ) приписывается стоимость c( n i п j ). Последовательность вершин п 1, n2, ..., nk , где каждая вершинаni является преемником вершиныri -1, называется путем отn i к п k , а стоимость пути определяется формулой
.
Элемент контура мы определим как границу между двумя пикселами р и q . В данном контексте под контуром понимается последовательность элементов контура.
2.2.Определение порогового уровня
Понятие порогового уровня (порога) тест вида
Т = Т [х, у, р (х, у), f (х, у)],
гдеf( x, у) — интенсивность в точке (х, у), р( х, у)— некоторое локальное свойство, определяемое в окрестности этой точки. Пороговое изображение дается следующим выражением:
так что пикселы вg(x, у), имеющие значение 1, соответствуют объектам, а пикселы, имеющие значение 0, соответствуют фону. В уравнении предполагается, что интенсивность объектов больше интенсивности фона. Противоположное условие получается путем изменения знаков в неравенствах.
2.2.1.Глобальные и локальные пороги.
Если значение Т в уравнении зависит только от f(x, у), то, порог называется глобальным. Если значение Т зависит как от f(x, у), так и от р(х, у), порог называется локальным. Если, кроме того, Т зависит от пространственных координат х а у, в этом случае он называется динамическим порогом.
Глобальные пороги применяются в ситуациях, когда имеется явное различие между объектами и фоном и где освещенность достаточно однородна. Методы обратной и структурированной освещенности, обычно дают изображения, которые могут быть сегментированы путем применения глобальных порогов. Но, как правило, произвольное освещение рабочего пространства приводит к изображениям, которые, если исходить из определения порогового уровня, требуют локального анализа для компенсации таких эффектов, как неоднородность освещения, тени и отражение.
Ниже мы рассмотрим ряд методов для выбора порогов, используемых при сегментации. Хотя некоторые из них могут применяться для выбора глобального порога, они обычно используются в ситуациях, требующих анализа локального порога.
2.2.2.Выбор оптимального порога.
Часто рассматривают гистог рамму, состоящую из суммы значений функции плотности ве роятности. В случае бимодальной гистограммы аппро ксимирующая ее функция дается уравнением
p(z)= P1p1(z)+P2p2( z),
где интенсивность z— случайная переменная величина,p1( z) и p2 (z)— функции плотности вероятности, a P1 иP2 – априорные вероятности. В данном случае априорные вероятности означают появление двух видов уровней интенсивности на образе. Полная гистограмма может быть аппроксимирована суммой двух функций плотности вероятности. Если известно, что объект состоит из светлых пикселов и они занимают 20 % площади образа, тоPi == 0,2 . Необходимо, чтобы
Р1 +Рг =1 .
В данном случае это означает, что на остальную часть образа приходится 80 % пикселов фона. Введем две следующие функции отz:
d1(z)= P1p1( z),