Реферат: Технология сварки в инертных газах

Мощность дуги возрастает с увеличением давления окружающей зону сварки защитной атмосферы при неизменной силе тока и длине дуги. Дуга при этом сжимается, благодаря чему увеличивается её проплавляющая способность примерно на 25–60%. Этот способ может использоваться при сварке в камерах с контролируемой среде, с применением общей защиты.

Импульсная дуга находит применение для сварки тонколистового металла. Основной металл расплавляется дугой, горящей периодически отдельными импульсами постоянного тока с определенными интервалами во времени. При большом перерыве в горении дуги дуговой промежуток деионизируется, что приводит к затруднению в повторном возбуждении дуги. Для устранения этого недостатка постоянно поддерживается вторая, обычно маломощная дежурная дуга от самостоятельного источника питания. На эту дугу и накладывается основная импульсная дуга. Дежурная дуга, постоянно поддерживая термоэлектронную эмиссию с электрода, обеспечивает стабильное возникновение основной сварочной дуги.

Шов в этом случае состоит из отдельных перекрывающих друг друга точек. Величина перекрытия зависит от металла и его толщины, силы сварочного тока и тока дежурной дуги, скорости сварки и т.д. С увеличением силы тока и длительности его импульса ширина шва и глубина проплавления увеличиваются. Размеры шва в большей степени зависят от силы тока, чем от длительности его импульса. Благоприятная форма отдельных точек, близкая к кругу, уменьшает возможность вытекания расплавленного металла из сварочной ванны (прожога). Поэтому сварку легко выполнять па весу без подкладок при хорошем качестве, но всех пространственных положениях.

Представляет определенный интерес использование внешнего магнитного поля для отклонения или перемещения непрерывно горящей дуги. Внешнее переменное или постоянное магнитное поле, параллельное или перпендикулярное к направлению сварки, создается П-образными электромагнитами. При использовании постоянного магнитного поля дугу можно отклонить в любую сторону относительно направления сварки. При отклонении дуги в сторону направления сварки (магнитное поле также параллельно направлению сварки) наблюдается такой же эффект, как и при сварке наклонным электродом – углом вперед. В этом случае уменьшается глубина проплавления. При отклонении дуги в обратном направлении наблюдается увеличение глубины проплавления, как при сварке с наклоном электрода углом назад.

При переменном внешнем магнитном поле дуга колеблется с частотой внешнего магнитного поля. К результате изменяются условия ввода теплоты в изделие, и, а частности, се распределение по поверхности. При колебании дуги поперек направления сварки увеличивается ширина шва и уменьшается глубина проплавления. Это позволяет сваривать тонколистовой металл. Удобно использовать этот способ для сварки разнородных металлов (например, меди и стали и др.) небольшой толщины при отбортовке кромок.

Колебания, сообщаемые расплавленному металлу сварочной ванны, изменяют характер его кристаллизации и способствуют измельчению зерна. В результате улучшаются свойства наплавленного металла. Поэтому этот способ используют при сварке металлов, характеризующихся крупнозернистым строением металла шва, таких как алюминий, медь, титан и их сплавы. Имеется положительный опыт использования способа и при сварке высокопрочных сталей и сплавов.

Сварка вольфрамовым электродом обычно целесообразна для соединения металла толщиной 0,1–6 мм. Однако ее можно применять и для больших толщин. Сварку выполняют без присадки, когда шов формируется за счет расплавления кромок, и с дополнительным присадочным металлом, предварительно уложенным в разделку или подаваемым в зону дуги в виде присадочной проволоки. Угловые и стыковые швы во всех пространственных положениях выполняют вручную, полуавтоматически и автоматически.

Для получения качественной сварки, особенно тонколистовых конструкций, следует обеспечивать точную подготовку и сборку кромок прихватками вручную вольфрамовым электродом или в специальных сборочно-сварочных приспособлениях.

Загрязнение рабочего конца электрода понижает его стойкость (образуется сплав вольфрама с более низкой температурой плавления) и ухудшает качество шва. Поэтому дугу возбуждают без прикосновения к основному металлу или присадочной проволоке, используя осциллятор. При правильном выборе силы сварочного тока рабочий конец электрода расходуется незначительно и долго сохраняет форму заточки.

Качество шва в большой степени определяется надежностью оттеснении от зоны сварки воздуха. Необходимый расход защитного газа устанавливают в зависимости от состава и толщины свариваемого металла, типа сварного соединения и скорости сварки. При сварке соединений где требуется повышенный расход защитного газа рекомендуется применять экраны, устанавливаемые сбоку и параллельно шву. Поток защитного газа при сварке должен надежно охватывать всю область сварочной ванны, разогретую часть присадочного прутка и электрод. При повышенных скоростях сварки поток защитного газа может оттесняться воздухом. В этих случаях следует увеличивать расход защитного газа.

При сварке многопроходных швов с V– или Х-образной разделкой кромок первый проход часто выполняют вручную или механизированно без присадочного металла на весу. Разделку заполняют при последующих проходах с присадочным металлом. Для формирования корня шва можно использовать медные или стальные съемные подкладки, флюсовую подушку. В некоторых случаях возможно применение и остающихся подкладок.

При сварке труб или закрытых сосудов газ пропускают внутрь сосуда. Инертные газы, увеличивая поверхностное натяжение расплавленного металла, улучшают формирование корня шва. Поэтому их поддув используют при сварке сталей на весу. При сварке на весу, особенно без присадочного металла, следует тщательно поддерживать требуемую величину зазора между кромками.

6. Сварка плавящимся электродом в инертных газах

Принцип этой технологии заключается в том, что на подводимый от катушки при помощи двигателя подачи проволочный электрод незадолго до выхода из горелки подается ток через токоподводящий мундштук, благодаря чему между концом проволочного электрода и изделием горит электрическая дуга. Защитный газ подается через газовое сопло, концентрически окружающее проволочный электрод. Благодаря этому осуществляется защита наплавляемого металла от атмосферных газов – кислорода, водорода и азота.

?????? ?????????? ?????????? ????????? ????????????????? ??? ????????????? ? ????????, ???????? ????? ??? ?????? ?????. ??? ?????? ??????, ?????????? ????????????????? ???????? (????????, ????? ? ??.), ? ???????? ????????? ???? ??????????? ???????????? ?????.??? ????????????? ?????? ?????????? ?????????? ???????? ??????????????? ??? ???????? ??????? ???????????? ???????. ??? ??????????????? ???????? ??????? ?????? ????????????, ? ??????? ???????????????. ??? ??????????????? ?????????????? ????, ??? ??? ?????????????????? ?????? ? ?????????? ????, ??? ??? ?????????? ???????? ???????? ? ???? ????? ????????? ?? ??????? ????????. ???????? ????? ??? ???????????????? ???????? ?????????? ?????, ???????? ??? ????????? ????????? d = 1,6 ?? Iсв = 120?240?. ??? ???? ???? Iсв ?????? 260? ?????????? ?????? ??????? ? ????????? ????????, ???????????? ???????? ?????? ??????????, ?????????????? ???????????. ??? ?????? ? ???????? ????? ?????????? ???????? ???? ????, ?????????????? ???????? ??????? ???????????? ???????. ?????? ????? ???? ?? ?????? ????????????? ??????????????? ???????????. ??????? ????? ??????????? ??? ??????????? ???????????? ???????? ???????????? ?????????? ????????? ??????? ????, ??????? ???????????? ??????? ? ????????? ???????? ?? ????? ????? Iсв ≈ 100?.

В настоящее время для сварки конструкционных сталей широко применяется полуавтоматическая сварка в смеси 82% аргона и 18% углекислого газа.

Заключение

В реферате изложены особенности технологии сварки в инертных газах. Рассмотрены история развития данного вида сварки, применяемые для защиты газы, разновидности сварки в защитных газах. Приведены ориентировочные режимы сварки, особенности сварки активных металлов и сплавов. Несмотря на то что сварка в инертных газах получила широкое применение более полувека назад, она до сих пор является одной из самых востребованных способов сварки.

Список литературы

1. Технология и оборудование сварки плавлением и термической резки: Учебник для вузов. – 2-е изд., испр. и доп. / А.И. Акулов, В.П. Алехин, С.И. Ермаков и др. /Под ред. А.И. Акулова. – М: Машиностроение, 2003. – 560 с.

2. Справочник «Сварка. Резка. Контроль» в 2-х томах / Под общ. ред. Н.П. Алёшина, Г.Г. Чернышева, М.: Машиностроение, т. 1, 2004. – 624 с.

3. Чернышев Г.Г. Сварочное дело: Сварка и резка металлов. – М.: издательский центр «Академия», 2007. – 496 с.

4. Виноградов В.С. Оборудование и технология дуговой автоматической и механизированной сварки: Учеб. для проф. учеб. заведений. – 3-е изд., стер. – М.: Высш. шк., Изд. центр «Академия», 2000. – 319 с.

5. Теория сварочных процессов: Учебник для вузов / А.В. Коновалов, А.С. Куркин, Э.Л. Неровный, Б.Ф. Якушин; Под ред. В.М. Неровного. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. – 752 с.

6. Ашихмин В.Н. Закураев В.В. Автоматизированное проектирование технологических процессов: Учеб. пособ. для вузов. – Новоуральск, Новоуральский гос. технологич. институт, 2006. – 196 с.

7. Хромченко Ф.А. Справочное пособие электросварщика – 2-е изд., испр. – М.: Машиностроение, 2005. – 415 с.

8. Ханапетов М.В. Сварка и резка металлов. – 3-е изд., перераб. и доп. – М.: Стройиздат, 1987. – 288 с.

К-во Просмотров: 301
Бесплатно скачать Реферат: Технология сварки в инертных газах