Реферат: Теория измерений

В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру можно считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием выбора определенного типа шкалы). Кроме перечисленных шести основных типов шкал, иногда используют и иные шкалы.

Инвариантные алгоритмы и средние величины

Основное требование к алгоритмам анализа данных формулируется в ТИ так: выводы, сделанные на основе данных, измеренных в шкале определенного типа, не должны меняться при допустимом преобразовании шкалы измерения этих данных. Другими словами, выводы должны быть инвариантны по отношению к допустимым преобразованиям шкалы.

Таким образом, одна из основных целей теории измерений - борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в аршинах, метрах, микронах, милях, парсеках и других единицах измерения. Массу (вес) - в пудах, килограммах, фунтах и др. Цены на товары и услуги можно указывать в юанях, рублях, тенге, гривнах, латах, кронах, марках, долларах США и других валютах (при условии заданных курсов пересчета). Подчеркнем очень важное, хотя и вполне очевидное обстоятельство: выбор единиц измерения зависит от исследователя, т.е. субъективен. Статистические выводы могут быть адекватны реальности только тогда, когда они не зависят от того, какую единицу измерения предпочтет исследователь, т.е. когда они инвариантны относительно допустимого преобразования шкалы.

Оказывается, сформулированное условие является достаточно сильным. Из многих алгоритмов эконометрического анализа данных ему удовлетворяют лишь некоторые. Покажем это на примере сравнения средних величин.

Пусть Х1, Х2,…, Хn - выборка объема n. Часто используют среднее арифметическое

Использование среднего арифметического настолько привычно, что второе слово в термине часто опускают. И говорят о средней зарплате, среднем доходе и других средних для конкретных экономических данных, подразумевая под "средним" среднее арифметическое. Такая традиция может приводить к ошибочным выводам. Покажем это на примере расчета средней заработной платы (среднего дохода) работников условного предприятия (табл.1).

Табл.1. Численность работников различных категорий, их заработная плата и доходы (в условных единицах).

№ п/п Категория работников Число работников Заработная плата Суммарные доходы
1 Низкоквалифицированные рабочие 40 100 4000
2 Высококвалифицированные рабочие 30 200 6000
3 Инженеры и служащие 25 300 7500
4 Менеджеры 4 1000 4000
5 Генеральный директор (владелец) 1 18500 18500
6 Всего 100 40000

Первые три строки в табл.1 вряд ли требуют пояснений. Менеджеры - это директора по направлениям, а именно, по производству (главный инженер), по финансам, по маркетингу и сбыту, по персоналу (по кадрам). Владелец сам руководит предприятием в качестве генерального директора. В столбце "заработная плата" указаны доходы одного работника соответствующей категории, а в столбце "суммарные доходы" - доходы всех работников соответствующей категории.

Фонд оплаты труда составляет 40000 единиц, работников всего 100, следовательно, средняя заработная плата составляет 40000/100 = 400 единиц. Однако эта средняя арифметическая величина явно не соответствует интуитивному представлению о "средней зарплате". Из 100 работников лишь 5 имеют заработную плату, ее превышающую, а зарплата остальных 95 существенно меньше средней арифметической. Причина очевидна - заработная плата одного человека - генерального директора - превышает заработную плату 95 работников - низкоквалифицированных и высококвалифицированных рабочих, инженеров и служащих.

Ситуация напоминает описанную в известном рассказе о больнице, в которой 10 больных, из них у 9 температура 40 0С, а один уже отмучился, лежи в морге с температурой 0 0С. Между тем средняя температура по больнице равна 36 0С - лучше не бывает!

Сказанное показывает, что среднее арифметическое можно использовать лишь для достаточно однородных совокупностей (без больших выбросов в ту или иную сторону). А какие средние использовать для описания заработной платы? Вполне естественно использовать медиану. Для данных табл.1 медиана - среднее арифметическое 50-го и 51-го работника, если их заработные платы расположены в порядке неубывания. Сначала идут зарплаты 40 низкоквалифицированных рабочих, а затем - с 41-го до 70-го работника - заработные платы высококвалифицированных рабочих. Следовательно, медиана попадает именно на них и равна 200. У 50-ти работников заработная плата не превосходит 200, и у 50-ти - не менее 200, поэтому медиана показывает "центр", около которого группируется основная масса исследуемых величин. Еще одна средняя величина - мода, наиболее часто встречающееся значение. В рассматриваемом случае это заработная плата низкоквалифицируемых рабочих, т.е.100. Таким образом, для описания зарплаты имеем три средние величины - моду (100 единиц), медиану (200 единиц) и среднее арифметическое (400 единиц). Для наблюдающихся в реальной жизни распределений доходов и заработной платы справедлива та же закономерность: мода меньше медианы, а медиана меньше среднего арифметического.

Для чего в экономике используются средние величины? Обычно для того, чтобы заменить совокупность чисел одним числом, чтобы сравнивать совокупности с помощью средних.

Пусть, например, Y1, Y2,...,Yn - совокупность оценок экспертов, "выставленных" одному объекту экспертизы (например, одному из вариантов стратегического развития фирмы), Z1, Z2,...,Zn - второму (другому варианту такого развития). Как сравнивать эти совокупности? Очевидно, самый простой способ - по средним значениям.

А как вычислять средние? Известны различные виды средних величин: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое. Напомним, что общее понятие средней величины введено французским математиком первой половины ХIХ в. академиком О. Коши. Оно таково: средней величиной является любая функция f(X1, X2,...,Xn) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X1, X2,...,Xn, и не больше, чем максимальное из этих чисел. Все перечисленные выше виды средних являются средними по Коши.

При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в ТИ). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

Пусть f(X1, X2,...,Xn) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f(Y1, Y2,...,Yn) < f(Z1, Z2,...,Zn).

Тогда согласно ТИ для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g из группы допустимых преобразований в соответствующей шкале было справедливо также неравенство

f(g(Y1), g(Y2),...,g(Yn)) < f(g(Z1), g(Z2),...,g(Zn)).

т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2,...,Ynи Z1, Z2,...,Zn и, напомним, любого допустимого преобразования. Средние величины, удовлетворяющие сформулированному условию, назовем допустимыми (в соответствующей шкале). Согласно ТИ только такими средними можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

С помощью математической теории, развитой в монографии [2], удается описать вид допустимых средних в основных шкалах. Сразу ясно, что для данных, измеренных в шкале наименований, в качестве среднего годится только мода.

Средние величины в порядковой шкале

Рассмотрим обработку мнений экспертов, измеренных в порядковой шкале. Справедливо следующее утверждение.

Теорема 1. Из всех средних по Коши допустимыми средними в порядковой шкале являются только члены вариационного ряда (порядковые статистики).

Теорема 1 справедлива при условии, что среднее f(X1, X2,...,Xn) является непрерывной (по совокупности переменных) и симметрической функцией. Последнее означает, что при перестановке аргументов значение функции f(X1, X2,...,Xn) не меняется. Это условие является вполне естественным, ибо среднюю величину мы находим для совокупности (множества), а не для последовательности. Множество не меняется в зависимости от того, в какой последовательности мы перечисляем его элементы.

Согласно теореме 1 в качестве среднего для данных, измеренных в порядковой шкале, можно использовать, в частности, медиану (при нечетном объеме выборки). При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану. Моду тоже можно использовать - она всегда является членом вариационного ряда. Но никогда нельзя рассчитывать среднее арифметическое, среднее геометрическое и т.д.

Приведем численный пример, показывающий некорректность использования среднего арифметического f(X1, X2) = (X1 + X2) /2 в порядковой шкале. Пусть Y1= 1, Y2 = 11, Z1= 6, Z2= 8. Тогда f(Y1, Y2) = 6, что меньше, чем f(Z1, Z2) = 7. Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99. Таких преобразований много. Например, можно положить g(x) = x при x, не превосходящих 8, и g(x) = 99(x-8) /3 + 8 для х, больших 8. Тогда f(g(Y1), g(Y2)) = 50, что больше, чем f(g(Z1), g(Z2)) = 7. Как видим, в результате допустимого, т.е. строго возрастающего преобразования шкалы упорядоченность средних изменилась.

Таким образом, ТИ выносит жесткий приговор среднему арифметическому - использовать его с порядковой шкале нельзя. Однако же те, кто не знает теории измерений, используют его. Всегда ли они ошибаются? Оказывается, можно в какой-то мере реабилитировать среднее арифметическое, если перейти к вероятностной постановке и к тому удовлетвориться результатами для больших объемов выборок. В монографии [2] получено также следующее утверждение.

Теорема 2. Пусть Y1, Y2,...,Ym - независимые одинаково распределенные случайные величины с функцией распределения F(x), а Z1, Z2,...,Zn - независимые одинаково распределенные случайные величины с функцией распределения H(x), причем выборки Y1, Y2,...,Ym и Z1, Z2,...,Zn независимы между собой и МY1 > MZ1. Для того, чтобы вероятность события

К-во Просмотров: 272
Бесплатно скачать Реферат: Теория измерений