Реферат: Теория колец
Мы видим, что если К является идеалом в R, произведение смежных классов (r+K)*(s+K) содержится в смежном классе r*s+K. Значит в факторгруппе R/K определена операция умножения, превращающая ее в кольцо, называемое факторкольцом кольца R по идеалу К.
Примеры.
1. Подкольцо nZ является идеалом кольца Z , поскольку для любого целого m m(nZ ) nZ . Факторкольцо Z /nZ - это множество вычетов по модулю n с операциями сложения и умножения. Отметим, что если число n не является простым, то Z /nZ имеет делители нуля.
2. Пусть IR [x] - множество всех многочленов
, у которых
=0. Удобно записать: I = xR [x]. Поскольку p*I =(p*x)R [x]
I, мы имеем идеал кольца многочленов. Каждый смежный класс q+I содержит элемент
. Значит, (q+I)*(s+I) = (
+I)*(
+I) =
*
+I.
3. В развитие предыдущего примера рассмотрим некоторое ассоциативное коммутативное кольцо S. Если любой его элемент, то множество I=x*S является идеалом кольца S, называемым главным идеалом с образующим элементом x. Этот идеал обозначается (x). Если S кольцо с единицей и элемент x обратим, то (x)=S.
4. Если кольцо S является полем, то всякий ненулевой идеал I в S совпадает со всем полем. В самом деле, если , x
0, то для всякого
имеем:
, откуда
.
5. Пусть I идеал кольца R. Сопоставляя каждому элементу смежный класс r+I, получаем сюръективный гомоморфизм
. Этот гомоморфизм называется естественным гомоморфизмом кольца на факторкольцо.
Замечание.
Свойства ассоциативности, коммутативности и наличия единицы очевидно сохраняются при переходе к факторкольцу. Напротив, отсутствие в R делителей нуля еще не гарантирует их отсутствие в факторкольце (см. пример 1).
Теорема об ядре.
Ядро гомоморфизма колец является идеалом.
Доказательство.
Пусть - гомоморфизм колец, I =Ker
,
- любой элемент. Тогда,
(x*I) =
(x)*
(I) =
(x)*0 =0. Значит, x*I
Ker
=I. Аналогично проверяется, что I*x
I.
Теорема о гомоморфизме для колец .
Пусть - сюръективный гомоморфизм колец. Тогда S изоморфно факторкольцу R/Ker
. Если эти изоморфные кольца отождествить, то
отождествляется с естественным гомоморфизмом кольца R на свое факторкольцо.
Доказательство этой теоремы аналогично доказательству соответствующей теоремы для групп и мы его опускаем.
Пример.
Пусть K - кольцо многочленов R [x], : K
C - гомоморфизм, сопоставляющий каждому многочлену p его значение в точке i :
(p) =p(i). Ядро этого гомоморфизма составляют многочлены, представимые в виде: (
+1)*q(x), где q - любой многочлен. Можно записать: Ker
=(
+1). По теореме о гомоморфизме
.
Кольцо многочленов над полем.
Кольцо многочленов над полем (в отличие от случая многочленов над кольцом) обладает рядом специфических свойств, близких к свойствам кольца целых чисел Z .
I. Делимость многочленов.
Хорошо известный для многочленов над полем R способ деления “углом” использует только арифметические действия над коэффициентами и потому применим к многочленам над любым полем k. Он дает возможность для двух ненулевых многочленов p,sk[x] построить такие многочлены q (неполное частное) и r (остаток), что p = q*s +r , причем либо r =0, либо deg(r )< deg(s ). Если r =0 , то говорят, что s делит p (или является делителем p ) и обозначают это так: s | p. Будем называть многочлен унитарным ( или приведенным), если его старший коэффициент равен 1.
Определение.
Общим наибольшим делителем ненулевых многочленов p и s называется такой унитарный многочлен ОНД( p, s), что
1. ОНД( p, s) | p; ОНД( p, s) | s.
2. q | p, q | s q | ОНД( p, s).
По определению, для ненулевого многочлена р со старшим коэффициентом а ОНД (р, 0) = ОНД (0, р) = р/а; ОНД (0, 0)=0.
Аналогично определяется ОНД любого числа многочленов.
Единственность ОНД двух многочленов непосредственно вытекает из определения. Существование его следует из следующего утверждения.
Основная теорема теории делимости ( для многочленов).
Для любых двух ненулевых многочленов p и q над полем k можно найти такие многочлены u и v над тем же полем, что ОНД(p, q)= u*p+v*q.