Реферат: Транспорт газов кровью

Эти карбаминовые соединения служат в качестве аллостерических эффекторов молекулы гемоглобина и непосредственно влияют на связывание О2 .

Низкий уровень карбаминовых соединений вызывает сдвиг кривой вправо и снижение сродства гемоглобина к О2 , что сопровождается увеличение высвобождения О2 в тканях. По мере роста РаСО2 сопутствующее ему увеличение карбаминовых соединений сдвигает кривую влево, повышая связывание О2 гемоглобином.

Органические фосфаты, в частности 2,3-дифосфоглицерат (2,3-ДФГ), образуются в эритроцитах в процессе гликолиза. Продукция 2,3 - ДФГ увеличивается во время гипоксемии, что является важным механизмом адаптации. Ряд условий, вызывающих снижение О2 в периферических тканях, таких как анемия, острая кровопотеря, застойная сердечная недостаточность и т.д. характеризуются увеличением продукции органических фосфатов в эритроцитах.

При этом уменьшается сродство гемоглобина к О2 и повышается его высвобождение в тканях. И наоборот, при некоторых патологических состояниях, таких как септический шок и гипофосфатемия, наблюдается низкий уровень 2,3-ДФГ, что приводит к сдвигу кривой диссоциации оксигемоглобина влево.

Температура тела влияет на кривую диссоциации оксигемоглобина менее выражено и клинически значимо, чем описанные выше факторы. Гипертермия вызывает повышение Р50 , т.е. сдвиг кривой вправо, что является благоприятной приспособительной реакцией не повышенный кислородный запрос клеток при лихорадочных состояниях. Гипотермия, напротив, снижает Р50 , т.е. сдвигает кривую диссоциации влево.

СО, связываясь с гемоглобином (образуя карбоксигемоглобин), ухудшает оксигенацию периферических тканей посредством двух механизмов. Во-первых, СО непосредственно уменьшает кислородную емкость крови. Во-вторых, снижая количество гемоглобина, доступного для связывания О2 ; СО снижает Р50 и сдвигает кривую диссоциации оксигемоглобина влево.

Окисление части двухвалентного железа гемоглобина до трехвалентного приводит к образованию метгемоглобина. В норме у здоровых людей метгемоглобин составляет менее 3% общего гемоглобина. Низкий его уровень поддерживается внутриклеточными ферментными механизмами восстановления.

Метгемоглобинемия может наблюдаться как следствие врожденной недостаточности этих восстановительных ферментов или образования аномальных молекул гемоглобина, резистентных к ферментативному восстановлению (например, гемоглобин М).

3. Доставка кислорода и двуокиси углерода

Доставка кислорода (DО2 ) представляет собой скорость транспорта кислорода артериальной кровью, которая зависит от кровотока и содержания О2 в артериальной крови. Системная доставка кислорода (DО2 ), рассчитывается как:

DO2 = СаО2 х Qt (мл/мин) или

DO2 = ([ ( Hb) ´1,34 ´% насыщения] + [0,0031 ´ PaO2) ´ Qt (мл/мин) = 20 мл О2 /100 мл крови ´ 5000 мл/мин = 1000 мл О2 /мин .

Доставку и потребление кислорода часто рассчитывают с учётом площади поверхности тела. При сердечном индексе, составляющем 3 л/ (мин* м-2 ) (Qt делённый на площадь поверхности тела) нормальное значение DО2 = 540 мл/ (мин ´ м2 ). Если обычный показатель сердечного выброса составляет от 2,5 до 3,5 л/мин/м2 , то нормальная величина DО2 колеблется от 520 до 720 мл/мин/м2 .

Существует тонкое сопряжение между артериальным содержанием О2 , сердечным выбросом, тканевой утилизацией О2 и содержанием О2 в смешанной венозной крови.

Некоторые заболевания, такие как РДСВ и сепсис, сопровождаются нарушением сопряжения между утилизацией О2 периферическими тканями и доставкой кислорода. Утилизация снижается, когда доставка падает ниже некоторого порога.

Отношение между этими переменными выражается правилом Фика, которое устанавливает, что потребление О2 (объем в 1 мин) является произведение минутного сердечного выброса и артериовенозной разницы О2 :

Потребление О2 = VO2 = Q ´ ( CaO2 - CvO2 ) .

В условия основного обмена взрослый человек потребляет около 250 мл О2 в минуту, с учетом площади поверхности тела - 110-160 мл/ (мин* м2 ). Однако скорость утилизации О2 различными тканями неодинакова.

Содержание кислорода в смешанной венозной крови представляет собой усредненную величину для венозной крови от всех органов - и низким, и с высоким уровнями экстракции О2 .

Возросшая кислородная потребность при фиксированном минутном сердечном выбросе вызывает увеличение артерио-венозной разницы по О2 . Кроме того, нормальный компенсаторный ответ на снижение кровотока проявляется также в виде увеличения поглощения кислорода, достаточного для поддержания VO2 на нормальном уровне.

Иными словами, падение сердечного выброса компенсируется увеличением разницы SaO2 - SvO2 , и VO2 остаётся неизменным. Следовательно, артериовенозную разницу можно рассматривать как меру адекватности доставки кислорода, а снижение SvO2 отражает увеличение экстракции кислорода.

При нормальном потреблении кислорода около 250 мл/мин и сердечном выбросе 5000 мл/мин нормальная артериовенозная разница, согласно этому уравнению, составит 5 мл О2 /100 мл крови. При этом нормальный коэффициент экстракции О2 [ (СаО2 - CvO2 ) /CaO2 ] составит 25%, т.е.5 мл/20 мл.

Таким образом, в норме организм потребляет только 25% кислорода, переносимого гемоглобином. Когда потребность в О2 превосходит возможность его доставки, то коэффициент экстракции становится выше 25%. Наоборот, если доставка О2 превышает потребность, то коэффициент экстракции падает ниже 25%.

Если доставка кислорода снижена умеренно, потребление кислорода не изменяется благодаря увеличению экстракции О2 (насыщение гемоглобина кислородом в смешанной венозной крови снижается). В этом случае VO2 не зависит от доставки.

По мере дальнейшего снижения DO2 достигается критическая точка, в которой VO2 становится прямо пропорциональна DO2 . Состояние, при котором потребление кислорода зависит от доставки, характеризуется прогрессирующим лактат-ацидозом, обусловленным клеточной гипоксией. Критический уровень DO2 наблюдается в различных клинических ситуациях.

Например, его значение 300 мл/ (мин* м2 ) отмечено после операций в условиях искусственного кровообращения и у больных с острой дыхательной недостаточностью.

Напряжение углекислого газа в смешанной венозной крови (PvCO2 ) в норме составляет примерно 46 мм рт. ст., что является конечным результатом смешивания крови, притекающей из тканей с различными уровнями метаболической активности.

Венозное напряжение углекислого газа в венозной крови меньше в тканях с низкой метаболической активностью (например, в коже) и больше в органах с высокой метаболической активностью (например, в сердце).

Двуокись углерода легко диффундирует. Ее способность к диффузии в 20 раз превышает таковую у кислорода. СО2 , по мере образования в процессе клеточного метаболизма, диффундирует в капилляры и транспортируется к легким в трех основных формах: в виде растворенной СО2 , в виде аниона бикарбоната и в виде карбаминовых соединений.

СО2 очень хорошо растворяется в плазме. Количество растворенной фракции определяется произведением парциального давления СО2 и коэффициента растворимости (a =0,3 мл/л крови /мм рт. ст). Около 5% общей двуокиси углерода в артериальной крови находится в форме растворенного газа.

К-во Просмотров: 368
Бесплатно скачать Реферат: Транспорт газов кровью