Реферат: Цифровые транспортные сети SDH
Мультиплексоры SDH с волоконно-оптическими линиями связи между ними образуют среду, в которой администратор сети SDH организует цифровые каналы между точками подключения абонентского оборудования или оборудования вторичных (наложенных) сетей самого оператора — телефонных сетей и сетей передачи данных.
На рисунке 1 представлен пример первичной сети, построенной по технологии SDH.
Каналы SDH относятся к классу полупостоянных (semipermanent) — формирование (provisioning) канала происходит по инициативе оператора сети SDH, пользователи же лишены такой возможности, поэтому такие каналы обычно применяются для передачи достаточно устойчивых во времени потоков. Из-за полупостоянного характера соединений в технологии SDH чаще используется термин «кросс-коннект» (cross-connect), а не коммутация.
Рисунок 1 – Пример первичной сети, построенной на технологии SDH
Сети SDH относятся к классу сетей с коммутацией каналов на базе синхронного мультиплексирования с разделением по времени (Time Division Multiplexing, TDM), при котором адресация информации от отдельных абонентов определяется ее относительным временным положением внутри составного кадра, а не явным адресом, как это происходит в сетях с коммутацией пакетов.
С помощью каналов SDH обычно объединяют большое количество периферийных (и менее скоростных) каналов плезиохронной цифровой иерархии (PDH).
1.3 Достоинства сетей SDH
Сети SDH обладают многими отличительными особенностями:
- Гибкая иерархическая схема мультиплексирования цифровых потоков разных скоростей позволяет вводить в магистральный канал и выводить из него пользовательскую информацию любого поддерживаемого технологией уровня скорости без демультиплексирования потока в целом — а это означает не только гибкость, но и экономию оборудования. Схема мультиплексирования стандартизована на международном уровне, что обеспечивает совместимость оборудования разных производителей.
- Отказоустойчивость сети. Сети SDH обладают высокой степенью «живучести» — технология предусматривает автоматическую реакцию оборудования на такие типичные отказы, как обрыв кабеля, выход из строя порта, мультиплексора или отдельной его карты, при этом трафик направляется по резервному пути или происходит быстрый переход на резервный модуль. Переключение на резервный путь осуществляется обычно в течение 50 мс.
- Мониторинг и управление сетью на основе включаемой в заголовки кадров информации обеспечивают обязательный уровень управляемости сети вне зависимости от производителя оборудования и создает основу для наращивания административных функций в системах управления производителей оборудования SDH.
- Высокое качество транспортного обслуживания для трафика любого типа — голосового, видео и компьютерного. Лежащее в основе SDH мультиплексирование TDM обеспечивает трафику каждого абонента гарантированную пропускную способность, а также низкий и фиксированный уровень задержек.
2 ИЕРАРХИЯ СКОРОСТЕЙ И МЕТОДЫ МУЛЬТИПЛЕКСИРОВАНИЯ
2.1 Иерархия скоростей
Поддерживаемая технологией SDH/SONET (соответствующий американский стандарт) иерархия скоростей представлена в таблице 1.
SDH | SONET | Скорость |
STS–1, OC–1 | 51,840 Мбит/с | |
STM–1 | STS–3, OC–3 | 155,520 Мбит/с |
STM–3 | STS–9, OC-9 | 466,560 Мбит/с |
STM–4 | STS–12, OC–12 | 622,080 Мбит/с |
STM–6 | STS–18, OC–18 | 933,120 Мбит/с |
STM–8 | STS–24, OC–24 | 1,244 Гбит/с |
STM–12 | STS–36, OC–36 | 1,866 Гбит/с |
STM–16 | STS–48, OC–48 | 2,448 Гбит/с |
Таблица 1 – Поддерживаемые скорости SDH/ SONET
В стандарте SDH все уровни скоростей (и, соответственно, форматы кадров для этих уровней) имеют общее название: Synchronous Transport Module level N (STM-N). В технологии SONET существует два обозначения для уровней скоростей: Synchronous Transport Signal level N (STS-N) в случае передачи данных в виде электрического сигнала, и Optical Carrier level N (OC-N) в случае передачи данных по волоконно-оптическому кабелю. Далее для упрощения изложения будем ориентироваться на STM-N.
2.2 Элементы сети SDH
Oсновным элементом сети SDH является мультиплексор. Обычно он оснащен некоторым количеством портов PDH и SDH: например, портами PDH на 2 и 34/45 Мбит/с и портами SDH STM-1 на 155 Мбит/c и STM-4 на 622 Мбит/c. Порты мультиплексора SDH делятся на агрегатные и трибутарные. Трибутарные порты часто называют также портами ввода/вывода, а агрегатные — линейными. Эта терминология отражает типовые топологии сетей SDH, где имеется ярко выраженная магистраль в виде цепи или кольца, по которой передаются потоки данных, поступающие от пользователей сети через порты ввода/вывода (т. е. втекающие в агрегированный поток: tributary дословно означает «приток»).
Мультиплексоры SDH обычно делят на терминальные (Terminal Multiplexor, TM) и ввода/вывода (Add-Drop Multiplexor, ADM). Разница между ними состоит не в составе портов, а в положении мультиплексора в сети SDH, как показано на рисунке 2. Терминальное устройство завершает агрегатные каналы, мультиплексируя в них большое количество каналов ввода/вывода (трибутарных). Мультиплексор ввода/вывода транзитом передает агрегатные каналы, занимая промежуточное положение на магистрали (в кольце, цепи или смешанной топологии). При этом данные трибутарных каналов вводятся в агрегатный канал или выводятся из него. Агрегатные порты мультиплексора поддерживают максимальный для данной модели уровень скорости STM-N, значение которой служит для характеристики мультиплексора в целом, например мультиплексор STM-4 или STM-64.
Рисунок 2 – Положение мультиплексоров в сети SDH
синхронный цифровой сеть мультиплексирование
Иногда различают так называемые кросс-коннекторы (Digital Cross-Connect, DXC) — в отличие от мультиплексоров ввода/вывода, они выполняют коммутацию произвольных виртуальных контейнеров, а не только контейнера из агрегатного потока с соответствующим контейнером трибутарного потока. Чаще всего кросс-коннекторы реализуют соединения между трибутарными портами (точнее — виртуальными контейнерами, формируемыми из данных трибутарных портов), но могут применяться кросс-коннекторы и агрегатных портов, т. е. контейнеров VC-4 и их групп. Последний вид мультиплексоров пока встречается реже, чем остальные, так как его применение оправдано при большом количестве агрегатных портов и ячеистой топологии сети, а это существенно увеличивает стоимость, как мультиплексора, так и сети в целом.
Большинство производителей выпускает универсальные мультиплексоры, которые могут использоваться в качестве терминальных, ввода/вывода и кросс-коннекторов — в зависимости от набора установленных модулей с агрегатными и трибутарными портами. Однако возможности использования таких мультиплексоров в качестве кросс-коннекторов весьма ограничен, поскольку производители часто выпускают модели мультиплексоров с возможностью установки только одной агрегатной карты с двумя портами. Конфигурация с двумя агрегатными портами является минимальной, обеспечивающей работу в сети с топологией кольцо или цепь. Такая конструкция мультиплексора не слишком дорога, но способна усложнить проектирование сети, если требуется реализовать ячеистую топологию на максимальной для мультиплексора скорости.
Кроме мультиплексоров в состав сети SDH могут входить регенераторы, они необходимы для преодоления ограничений по расстоянию между мультиплексорами, зависящих от мощности оптических передатчиков, чувствительности приемников и затухания волоконно-оптического кабеля. Регенератор преобразует оптический сигнал в электрический и обратно, восстанавливая при этом форму сигнала и его временные параметры. В настоящее время регенераторы SDH применяются достаточно редко, так как стоимость их ненамного меньше стоимости мультиплексора, а функциональные возможности несоизмеримы.
Схема сегментации сети SDH большой протяженности представлена на рисунке 3.